SpringBoot调用ChatGPT-API实现智能对话

目录

一、说明

二、代码

2.1、对话测试

2.2、单次对话

2.3、连续对话

2.4、AI绘画


一、说明

我们在登录chatgpt官网进行对话是不收费的,但需要魔法。在调用官网的API时,在代码层面上使用,通过API KEY进行对话是收费的,不过刚注册的小伙伴有免费5美金的体验额度,在不调用绘画模型,只是做为简单的问答,个人使用是没问题的。

ChatGPT官网

API使用情况

二、代码

2.1、对话测试

Gpt35TurboVO

java 复制代码
import lombok.Data;

@Data
public class Gpt35TurboVO {
    private String role;     // 角色一般为 user
    private String content;  // 询问内容
}

Controller

java 复制代码
    @GetMapping(value = "/test", produces = "text/event-stream;charset=UTF-8")
    public String test(@RequestParam String message) {
        //回复用户
        String apikey = "sk-****";
        //请求ChatGPT的URL
        String url = "https://api.openai.com/v1/chat/completions";

        Gpt35TurboVO gpt35TurboVO = new Gpt35TurboVO();
        gpt35TurboVO.setRole("user");
        gpt35TurboVO.setContent(message);
        List<Gpt35TurboVO> objects = new ArrayList<>();
        objects.add(gpt35TurboVO);
        Map<Object, Object> objectObjectHashMap = new HashMap<>();
        objectObjectHashMap.put("model", "gpt-3.5-turbo");  //使用的模型
        objectObjectHashMap.put("messages", objects);       //提问信息
        objectObjectHashMap.put("stream", false);            //流
        objectObjectHashMap.put("temperature", 0);          //GPT回答温度(随机因子)
        objectObjectHashMap.put("frequency_penalty", 0);    //重复度惩罚因子
        objectObjectHashMap.put("presence_penalty", 0.6);   //控制主题的重复度
        String postData = JSONUtil.toJsonStr(objectObjectHashMap);

        String result2 = HttpRequest.post(url)
                .header("Authorization", "Bearer " + apikey)//头信息,多个头信息多次调用此方法即可
                .header("Content-Type", "application/json")
                .body(postData)//表单内容
                .timeout(200000)//超时,毫秒
                .execute().body();

        System.out.println(result2);

        return result2;

    }

返回结果

2.2、单次对话

ChatBotSingleQuestionVO

java 复制代码
import lombok.Data;

/**
 * 应用管理-单次提问-VO
 * @author lf
 * @date 2023/8/18
 */
@Data
public class ChatBotSingleQuestionVO {

    /**
     * 用户输入的询问内容
     */
    private String prompt;

    /**
     * 角色扮演ID
     */
    private Integer rolePlayId;

}

Redis锁工具类

java 复制代码
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import java.util.concurrent.TimeUnit;

/**
 * redis锁工具类
 *
 * @author ruoyi
 */
@Component
public class RedisLock {
    @Autowired
    private RedissonClient redissonClient;

    /**
     * 获取锁
     *
     * @param lockKey 锁实例key
     * @return 锁信息
     */
    public RLock getRLock(String lockKey) {
        return redissonClient.getLock(lockKey);
    }

    /**
     * 加锁
     *
     * @param lockKey 锁实例key
     * @return 锁信息
     */
    public RLock lock(String lockKey) {
        RLock lock = getRLock(lockKey);
        lock.lock();
        return lock;
    }

    /**
     * 加锁
     *
     * @param lockKey   锁实例key
     * @param leaseTime 上锁后自动释放锁时间
     * @return true=成功;false=失败
     */
    public Boolean tryLock(String lockKey, long leaseTime) {
        return tryLock(lockKey, 0, leaseTime, TimeUnit.SECONDS);
    }

    /**
     * 加锁
     *
     * @param lockKey   锁实例key
     * @param leaseTime 上锁后自动释放锁时间
     * @param unit      时间颗粒度
     * @return true=加锁成功;false=加锁失败
     */
    public Boolean tryLock(String lockKey, long leaseTime, TimeUnit unit) {
        return tryLock(lockKey, 0, leaseTime, unit);
    }

    /**
     * 加锁
     *
     * @param lockKey   锁实例key
     * @param waitTime  最多等待时间
     * @param leaseTime 上锁后自动释放锁时间
     * @param unit      时间颗粒度
     * @return true=加锁成功;false=加锁失败
     */
    public Boolean tryLock(String lockKey, long waitTime, long leaseTime, TimeUnit unit) {
        RLock rLock = getRLock(lockKey);
        boolean tryLock = false;
        try {
            tryLock = rLock.tryLock(waitTime, leaseTime, unit);
        } catch (InterruptedException e) {
            return false;
        }
        return tryLock;
    }

    /**
     * 释放锁
     *
     * @param lockKey 锁实例key
     */
    public void unlock(String lockKey) {
        RLock lock = getRLock(lockKey);
        lock.unlock();
    }

    /**
     * 释放锁
     *
     * @param lock 锁信息
     */
    public void unlock(RLock lock) {
        lock.unlock();
    }
}

Controller

java 复制代码
    @PostMapping("/chatBotSingleQuestion/api")
    public AjaxResult chatBotSingleQuestion(@RequestBody ChatBotSingleQuestionVO chatBotSingleQuestionVO) {
        String answerContent = iChatBotSingleQuestionService.chatBotSingleQuestion(chatBotSingleQuestionVO);
        return success("success", answerContent);
    }

Impl

java 复制代码
    /**
     * 应用管理-用户单次提问-不支持续问对话
     * @param chatBotSingleQuestionVO
     * @return
     */
    @Override
    @Transactional
    public String chatBotSingleQuestion(ChatBotSingleQuestionVO chatBotSingleQuestionVO) {

        if (Objects.isNull(chatBotSingleQuestionVO.getRolePlayId())){
            throw new RuntimeException("参数不可为空");
        }


        String lockName = "QA_" + SecurityUtils.getUserId();

        //回答的内容
        String answerContent = "";

        try{
            RLock rLock = redisLock.getRLock(lockName);
            boolean locked = rLock.isLocked();

            if (locked) {
                throw new RuntimeException("正在回复中...");
            }

            //对同一用户访问加锁
            redisLock.lock(lockName);
            this.chatBefore(chatBotSingleQuestionVO);
            InputStream is = this.sendRequestBeforeChat(chatBotSingleQuestionVO);
            String line = "";
            BufferedReader reader = new BufferedReader(new InputStreamReader(is));
            while ((line = reader.readLine()) != null) {
                //首先对行数据进行处理
                if (StrUtil.isNotBlank(line) &&
                        !StrUtil.equals(line, "event: answer") &&
                        !StrUtil.equals(line, "event: chatResponse") &&
                        !StrUtil.contains(line, "data: {\"quoteLen\"")) {
                    line = CollectionUtil.removeEmpty(StrUtil.split(line, "data: ")).get(0);
                    if (!StrUtil.contains(line, "[DONE]")) {
                        String oneWord = catchTextGpt(line);
                        if (StrUtil.isNotBlank(oneWord)) {
                            answerContent = answerContent + oneWord;
                        }
                    }
                    WebSocketService.sendInfo(line, SecurityUtils.getUserId() + "");
                    TimeUnit.MILLISECONDS.sleep(50);
                }
            }
            //处理完了后将次条聊天记录进行记录
            if (StrUtil.isNotBlank(answerContent)) {
                //保存聊天记录
                this.saveDialogueProcess(chatBotSingleQuestionVO, answerContent);
                //更新提问次数
                this.upddateAppModel(chatBotSingleQuestionVO);
            }
            is.close();
            reader.close();


        } catch (Exception e) {
            throw new RuntimeException(e.getMessage());
        }finally {
            redisLock.unlock(lockName);
        }
        return answerContent;
    }

sendRequestBeforeChat方法

java 复制代码
    /**
     * 这块为问询,不包含对话模式
     *
     * @param chatBotSingleQuestionVO
     * @return
     * @throws Exception
     */
    @Transactional
    public InputStream sendRequestBeforeChat(ChatBotSingleQuestionVO chatBotSingleQuestionVO) throws Exception {
        InputStream in = null;
        // 通知内容添加文本铭感词汇过滤
        //其余错误见返回码说明
        //正常返回0
        //违禁词检测
        this.disableWordCheck(chatBotSingleQuestionVO.getPrompt());
        String apikeyRefresh = getOpenAiKey();
        if (StrUtil.isBlank(apikeyRefresh)) {
            throw new RuntimeException("无可用key");
        }
        List<Gpt35TurboVO> chatContext = this.getChatContext(chatBotSingleQuestionVO);
        String requestUrl = iTbKeyManagerService.getproxyUrl();
        Map<Object, Object> objectObjectHashMap = new HashMap<>();
        objectObjectHashMap.put("model", "gpt-3.5-turbo");
        objectObjectHashMap.put("messages", chatContext);
        objectObjectHashMap.put("stream", true);
        objectObjectHashMap.put("temperature", 0);
        objectObjectHashMap.put("frequency_penalty", 0);
        objectObjectHashMap.put("presence_penalty", 0.6);
        String bodyJson = JSONUtil.toJsonStr(objectObjectHashMap);
        URL url = new URL(requestUrl); // 接口地址
        HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
        urlConnection.setRequestMethod("POST");
        urlConnection.setDoOutput(true);
        urlConnection.setDoInput(true);
        urlConnection.setUseCaches(false);
        urlConnection.setRequestProperty("Connection", "Keep-Alive");
        urlConnection.setRequestProperty("Charset", "UTF-8");
        urlConnection.setRequestProperty("Authorization", "Bearer " + apikeyRefresh);
        urlConnection.setRequestProperty("Content-Type", "application/json; charset=UTF-8");
        byte[] dataBytes = bodyJson.getBytes();
        urlConnection.setRequestProperty("Content-Length", String.valueOf(dataBytes.length));
        OutputStream os = urlConnection.getOutputStream();
        os.write(dataBytes);
        in = new BufferedInputStream(urlConnection.getInputStream());
        os.flush();
        os.close();
        return in;

    }

catchTextGpt方法

java 复制代码
    /**
     * 处理单独打印的文字
     *
     * @param str
     * @return
     */
    public String catchTextGpt(String str) {
        String choices = JsonUtil.parseMiddleData(str, "choices");
        JSONArray jsonArray = JSONUtil.parseArray(choices);
        String string = jsonArray.getByPath("[0].delta").toString();
        String content = JsonUtil.parseMiddleData(string, "content");
        return content;
    }

getChatContext方法

java 复制代码
    /**
     * 角色扮演
     * @param chatBotSingleQuestionVO
     * @return 结果
     */
    public List<Gpt35TurboVO> getChatContext(ChatBotSingleQuestionVO chatBotSingleQuestionVO) {

        List<Gpt35TurboVO> messages = new ArrayList<>();

        //首先获取角色,设置默认角色
        String default_role_content = iconfigService.selectConfigByKey("default_role");
        if (StrUtil.isBlank(default_role_content)) {
            default_role_content = "我是一个全能机器人,可以回答你任何问题";
        }

        TbAppModel tbAppModel = iTbAppModelService.selectTbAppModelById(Long.valueOf(chatBotSingleQuestionVO.getRolePlayId()));
        if (!Objects.isNull(tbAppModel)){
            default_role_content = tbAppModel.getAppModelContent();
        }
        //小程序专用
        //是否通过微信小程序审核的设定语
        String is_open_pass_wx_promt = iconfigService.selectConfigByKey("is_open_pass_wx_promt");
        if (StrUtil.isNotBlank(is_open_pass_wx_promt) && !StrUtil.equals(is_open_pass_wx_promt, "0")) {
            String pass_wx_promt = iconfigService.selectConfigByKey("pass_wx_promt");
            default_role_content = default_role_content + "。并且你必须遵循:" + pass_wx_promt;
        }

        //设定系统所扮演的角色
        Gpt35TurboVO gpt35TurboVOSys = new Gpt35TurboVO();
        gpt35TurboVOSys.setRole("system");
        gpt35TurboVOSys.setContent(default_role_content);
        messages.add(gpt35TurboVOSys);


        //最后查询用户最新询问的问题
        Gpt35TurboVO gpt35TurboUser = new Gpt35TurboVO();
        gpt35TurboUser.setRole("user");
        gpt35TurboUser.setContent(chatBotSingleQuestionVO.getPrompt());
        messages.add(gpt35TurboUser);
        return messages;
    }

getOpenAiKey方法

java 复制代码
    /**
     * 查询key是否可用
     * @return 结果
     */
    public String getOpenAiKey() {
        //模仿查到的key集合
        TbKeyManager tbKeyManager = new TbKeyManager();
        tbKeyManager.setIsUse(1);
        //可用的key
        List<TbKeyManager> tbKeyManagers = iTbKeyManagerService.selectTbKeyManagerList(tbKeyManager);
        //判断是否key额度用完
        if (CollectionUtil.isEmpty(tbKeyManagers) || tbKeyManagers.size() <= 0) {
            throw new RuntimeException("key额度耗尽");
        }
        //获取第一个key,然后将第一个key存入缓存
        String key = tbKeyManagers.get(0).getSecretKey();
        redisTemplate.opsForValue().set("apikey", key);
        //检查key
        changeKey(tbKeyManagers.get(0));
        return key;
    }

2.3、连续对话

Controller

java 复制代码
    @PostMapping(value = "/chatBotNoId/api")
    public AjaxResult continuousDialogue(@RequestBody StreamParametersVO streamParametersVO) {
        String answerContent = iChatGtpService.continuousDialogueSocketStream(streamParametersVO);
        return success("success", answerContent);
    }

Impl

java 复制代码
    /**
     * 用户直接发起连续对话,系统同意创建对话主题,用户不用手动新建主题
     *
     * @param streamParametersVO
     */
    @Override
    public String continuousDialogueSocketStream(StreamParametersVO streamParametersVO) {

        //判断是否isNewOpen填写参数,表示是否先开对话
        if (Objects.isNull(streamParametersVO.getIsNewOpen())) {
            throw new RuntimeException("isNewOpen参数未填");
        }

        if (streamParametersVO.getIsNewOpen()) {
            //新开对话,创建新的对话主题
            tbModelTable = new TbModelTable();
            //主题名称
            tbModelTable.setModelName("Dialogue_" + SecurityUtils.getUserId() + "_" + DateTime.now());
            //设置模板角色
            if (Objects.nonNull(streamParametersVO.getDialogueRoleId())) {
                tbModelTable.setId(Long.valueOf(streamParametersVO.getDialogueRoleId()));
            } else {
                tbModelTable.setId(1L);
            }
            tbDialogueMain = tbDialogueMainService.creatNewDig(tbModelTable);
        } else {
            //非新开对话,查询本次的对话主题
            TbDialogueMain tbDialogueMainParam = new TbDialogueMain();
            //设置模板角色
            if (Objects.nonNull(streamParametersVO.getDialogueRoleId())) {
                tbDialogueMainParam.setDialogueRoleId(Long.valueOf(streamParametersVO.getDialogueRoleId()));
            } else {
                tbDialogueMainParam.setDialogueRoleId(1L);
            }

            tbDialogueMainParam.setUserId(SecurityUtils.getUserId());
            List<TbDialogueMain> tbDialogueMains = iTbDialogueMainService.selectTbDialogueMainList(tbDialogueMainParam);

            if (CollectionUtil.isEmpty(tbDialogueMains)) {
                //创建新的对话主题
                tbModelTable = new TbModelTable();
                //主题名称
                tbModelTable.setModelName("Dialogue_" + SecurityUtils.getUserId() + "_" + DateTime.now());
                //设置模板角色
                tbModelTable.setId(Long.valueOf(streamParametersVO.getDialogueRoleId()));
                tbDialogueMain = tbDialogueMainService.creatNewDig(tbModelTable);
            } else {
                tbDialogueMain = tbDialogueMains.get(0);
            }

        }

        //设置对话ID
        streamParametersVO.setDialogueId(tbDialogueMain.getId());

        String lockName = "chat_" + SecurityUtils.getUserId();
        //回答的内容
        String answerContent = "";
        try {

            RLock rLock = redisLock.getRLock(lockName);
            boolean locked = rLock.isLocked();

            if (locked) {
                throw new RuntimeException("正在回复中...");
            }

            //对同一用户访问加锁
            redisLock.lock(lockName);

            //进来做校验
            TbDialogueMain tbDialogueMain = this.paramVerify(streamParametersVO);

            String userId = SecurityUtils.getUserId() + "";

            //将提问数据封装为流,并请求OpenAI的接口
            InputStream inputStream = this.sendRequestBefore(streamParametersVO, tbDialogueMain);

            String line = null;

            BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));

            while ((line = reader.readLine()) != null) {

                //首先对行数据进行处理
                if (StrUtil.isNotBlank(line) &&
                        !StrUtil.equals(line, "event: answer") &&
                        !StrUtil.equals(line, "event: chatResponse") &&
                        !StrUtil.contains(line, "data: {\"quoteLen\"")) {

                    line = CollectionUtil.removeEmpty(StrUtil.split(line, "data: ")).get(0);

                    if (StrUtil.contains(line, "[DONE]")) {
                    } else {

                        String oneWord = catchTextGpt(line);
                        if (StrUtil.isNotBlank(oneWord)) {
                            answerContent = answerContent + oneWord;
                        }
                    }

                    WebSocketService.sendInfo(line, userId);
                    TimeUnit.MILLISECONDS.sleep(50);

                }
            }

            //处理完了后,将此条聊天记录进行保存
            if (StrUtil.isNotBlank(answerContent)) {
                //保存聊天记录
                this.saveDig(streamParametersVO, answerContent);
            }
            inputStream.close();
            reader.close();

        } catch (Exception e) {
            throw new RuntimeException(e.getMessage());
        } finally {
            //解锁
            redisLock.unlock(lockName);
            //清除正在问话的标识
            redisTemplate.delete(SecurityUtils.getUserId() + "");
        }

        return answerContent;
    }

sendRequestBefore方法

java 复制代码
    /**
     * 这块为 - 流对话模式的封装
     *
     * @param streamParametersVO
     * @param tbDialogueMain
     * @return
     * @throws Exception
     */
    @Transactional
    public InputStream sendRequestBefore(StreamParametersVO streamParametersVO, TbDialogueMain tbDialogueMain) throws Exception {

        InputStream in = null;
        //提问内容
        String prompt = streamParametersVO.getPrompt();

        // 获取当前的用户
        String userId = SecurityUtils.getUserId() + "";
        Object o = redisTemplate.opsForValue().get(userId);

        if (!Objects.isNull(o)) {
            throw new RuntimeException("正在回复");
        }

        redisTemplate.opsForValue().set(userId, true, 30, TimeUnit.SECONDS);

        if (StrUtil.isBlank(prompt)) {
            throw new RuntimeException("输入内容为空");
        }

        // 通知内容添加文本铭感词汇过滤
        // 其余错误见返回码说明
        // 违禁词检测 正常返回0
        this.disableWordCheck(prompt);

        String apikeyRefresh = getOpenAiKey();
        if (StrUtil.isBlank(apikeyRefresh)) {
            throw new RuntimeException("无可用key");
        }

        //处理提问内容(指定系统角色+对话上下文+最新的提问内容)
        List<Gpt35TurboVO> chatContext = this.getChatDigContext(streamParametersVO, tbDialogueMain);

        String requestUrl = iTbKeyManagerService.getproxyUrl();
        Map<Object, Object> objectObjectHashMap = new HashMap<>();
        objectObjectHashMap.put("model", "gpt-3.5-turbo");
        objectObjectHashMap.put("messages", chatContext);
        objectObjectHashMap.put("stream", true);
        objectObjectHashMap.put("temperature", 0);
        objectObjectHashMap.put("frequency_penalty", 0);
        objectObjectHashMap.put("presence_penalty", 0.6);
        String bodyJson = JSONUtil.toJsonStr(objectObjectHashMap);
        URL url = new URL(requestUrl); // 接口地址
        HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
        urlConnection.setRequestMethod("POST");
        urlConnection.setDoOutput(true);
        urlConnection.setDoInput(true);
        urlConnection.setUseCaches(false);
        urlConnection.setRequestProperty("Connection", "Keep-Alive");
        urlConnection.setRequestProperty("Charset", "UTF-8");
        urlConnection.setRequestProperty("Authorization", "Bearer " + apikeyRefresh);
        urlConnection.setRequestProperty("Content-Type", "application/json; charset=UTF-8");
        byte[] dataBytes = bodyJson.getBytes();
        urlConnection.setRequestProperty("Content-Length", String.valueOf(dataBytes.length));
        OutputStream os = urlConnection.getOutputStream();
        os.write(dataBytes);
        in = new BufferedInputStream(urlConnection.getInputStream());
        os.flush();
        os.close();
        return in;

    }

getChatDigContext方法

java 复制代码
    /**
     * 获取对话上下文
     *
     * @param streamParametersVO
     * @return
     */
    public List<Gpt35TurboVO> getChatDigContext(StreamParametersVO streamParametersVO, TbDialogueMain tbDialogueMain) {

        List<Gpt35TurboVO> messages = new ArrayList<>();

        //首先获取角色,默认角色
        String default_role_content = iconfigService.selectConfigByKey("default_role");
        if (StrUtil.isBlank(default_role_content)) {
            default_role_content = "我是一个全能机器人,可以回答你任何问题";
        }

        //根据用户传递过来的Id查询角色模型数据
        TbModelTable tbModelTable = iTbModelTableService.selectTbModelTableById(tbDialogueMain.getDialogueRoleId());
        if (!Objects.isNull(tbModelTable)) {
            default_role_content = tbModelTable.getModelContent();
        }

        //小程序专用
        //是否通过微信小程序审核的设定语
        String is_open_pass_wx_promt = iconfigService.selectConfigByKey("is_open_pass_wx_promt");
        if (StrUtil.isNotBlank(is_open_pass_wx_promt) && !StrUtil.equals(is_open_pass_wx_promt, "0")) {
            String pass_wx_promt = iconfigService.selectConfigByKey("pass_wx_promt");
            default_role_content = default_role_content + "。并且你必须遵循:" + pass_wx_promt;
        }

        //设定系统所扮演的角色
        Gpt35TurboVO gpt35TurboVOSys = new Gpt35TurboVO();
        gpt35TurboVOSys.setRole("system");
        gpt35TurboVOSys.setContent(default_role_content);
        messages.add(gpt35TurboVOSys);

        //然后查询当前对话的上下文数据TbDialogueProcess
        TbDialogueProcess tbDialogueProcess = new TbDialogueProcess();
        tbDialogueProcess.setSessionId(streamParametersVO.getDialogueId());
        tbDialogueProcess.setUserId(SecurityUtils.getUserId());
        String default_context_num = iconfigService.selectConfigByKey("default_context_num");
        if (StrUtil.isBlank(default_context_num) || !NumberUtil.isNumber(default_context_num)) {
            default_context_num = "10";
        }
        tbDialogueProcess.setLimitNum(Integer.valueOf(default_context_num));

        //根据对话ID和用户ID查询到对话列表-根据时间倒叙获取后几条设定的数据
        List<TbDialogueProcess> tbDialogueProcessesDesc = iTbDialogueProcessService
                .selectTbDialogueProcessListByLimitDesc(tbDialogueProcess);

        if (CollectionUtil.isNotEmpty(tbDialogueProcessesDesc)) {
            //获取到倒数10条数据后将数据正序配好
            List<TbDialogueProcess> tbDialogueProcesses = tbDialogueProcessesDesc
                    .stream()
                    .sorted(Comparator.comparing(TbDialogueProcess::getCreateTime))
                    .collect(Collectors.toList());

            for (TbDialogueProcess tbDialogueProcessfor : tbDialogueProcesses) {
                Gpt35TurboVO gpt35TurboUser = new Gpt35TurboVO();
                //用户询问的问题
                gpt35TurboUser.setRole("user");
                gpt35TurboUser.setContent(tbDialogueProcessfor.getAskContent());
                messages.add(gpt35TurboUser);
                //机器人回答的问题
                Gpt35TurboVO gpt35TurAssistant = new Gpt35TurboVO();
                gpt35TurAssistant.setRole("assistant");
                gpt35TurAssistant.setContent(tbDialogueProcessfor.getAnswerContent());
                messages.add(gpt35TurAssistant);
            }

        }

        //最后查询用户最新询问的问题
        Gpt35TurboVO gpt35TurboUser = new Gpt35TurboVO();
        gpt35TurboUser.setRole("user");
        gpt35TurboUser.setContent(streamParametersVO.getPrompt());
        messages.add(gpt35TurboUser);

        return messages;
    }

2.4、AI绘画

Controller

java 复制代码
    @PostMapping("/image/api")
    public AjaxResult imageApi(@RequestBody StreamImageParametersVO streamImageParametersVO) {
        String answerContent = iChatGptImageService.imageSocketStream(streamImageParametersVO);
        return success("success",answerContent);
    }

Impl

java 复制代码
    @Override
    public String imageSocketStream(StreamImageParametersVO imageParametersVO) {

        String lockName = "image_" + SecurityUtils.getUserId();

        String answerContent = "";

        try{
            RLock rLock = redisLock.getRLock(lockName);
            boolean locked = rLock.isLocked();
            if (locked){
                throw new RuntimeException("回复中");
            }
            //对同一用户访问加锁
            redisLock.lock(lockName);
            //校验是否输入内容,次数扣减
            this.imageBefore(imageParametersVO);
            String userId = SecurityUtils.getUserId() + "";
            InputStream is = this.sendRequestBeforeImage(imageParametersVO);
            String line = null;
            BufferedReader reader = new BufferedReader(new InputStreamReader(is));
            while((line = reader.readLine()) != null){
                //数据处理
                if (StrUtil.isNotBlank(line) &&
                        !StrUtil.equals(line, "event: answer") &&
                        !StrUtil.equals(line, "event: chatResponse") &&
                        !StrUtil.contains(line, "data: {\"quoteLen\"")) {
                    line = CollectionUtil.removeEmpty(StrUtil.split(line, "data: ")).get(0);
                    if (StrUtil.contains(line, "[DONE]")){

                    }else{
                        String oneWord = catchUrlImage(line);
                        if (StrUtil.isNotBlank(oneWord)){
                            answerContent = answerContent + oneWord;
                        }
                    }
                    WebSocketService.sendInfo(line,userId);
                    TimeUnit.MILLISECONDS.sleep(50);
                }
            }
            //处理完之后将次条聊天记录进行记录
            if (StrUtil.isNotBlank(answerContent)){
                //保存聊天记录
                this.saveDialogueLog(imageParametersVO, answerContent);
            }
            is.close();
            reader.close();

        }catch (Exception e){
            throw new RuntimeException(e.getMessage());
        }finally {
            //解锁
            redisLock.unlock(lockName);
            redisTemplate.delete(SecurityUtils.getUserId() + "");
        }

        return saveImageUrl(jsonImageUrl(answerContent));
    }

sendRequestBeforeImage方法

java 复制代码
    /**
     * 问询,不包含对话模式
     */
    @Transactional
    public InputStream sendRequestBeforeImage(StreamImageParametersVO imageParametersVO) throws Exception{
        InputStream in = null;
        //通知内容添加文本敏感词汇过滤
        //其余错误见返回码说明
        //正常返回0
        //违禁词检测
        this.disbleWordImageCheck(imageParametersVO.getPrompt());
        String apikeyRefresh =  getOpenAiKey();
        if (StrUtil.isBlank(apikeyRefresh)){
            throw new RuntimeException("无可用key");
        }

//        List<Gpt35TurboVO> imageContext = this.getImageContext(imageParametersVO);
        String requestImageUrl = iTbKeyManagerService.getImageProxyUrl();
        Map<Object, Object> objectObjecHashtMap = new HashMap<>();
        objectObjecHashtMap.put("prompt", imageParametersVO.getPrompt());
        objectObjecHashtMap.put("n", 1);
        objectObjecHashtMap.put("size", "1024x1024");
        String bodyJson = JSONUtil.toJsonStr(objectObjecHashtMap);
        URL url = new URL(requestImageUrl); //接口地址
        HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
        urlConnection.setRequestMethod("POST");
        urlConnection.setDoOutput(true);
        urlConnection.setDoInput(true);
        urlConnection.setUseCaches(false);
        urlConnection.setRequestProperty("Connection", "Keep-Alive");
        urlConnection.setRequestProperty("Charset", "UTF-8");
        urlConnection.setRequestProperty("Authorization", "Bearer " + apikeyRefresh);
        urlConnection.setRequestProperty("Content-Type", "application/json; charset=UTF-8");
        byte[] dataBytes = bodyJson.getBytes();
        urlConnection.setRequestProperty("Content-Length", String.valueOf(dataBytes.length));
        OutputStream os = urlConnection.getOutputStream();
        os.write(dataBytes);
        in = new BufferedInputStream(urlConnection.getInputStream());
        os.flush();
        os.close();
        return in;

    }

catchUrlImage方法

java 复制代码
    /**
     * 对链接地址处理
     */
    public String catchUrlImage(String str){

        return str;

    }

图片处理,chatgpt返回的图片有效期是五分钟,我们需要将图片下载至本地或服务器。

java 复制代码
    /**
     * 保存图片返回的结果
     */
    public String saveImageUrl(String jsonUrl){

        String imageURL = uploadFileImageAi(jsonUrl);

        // 找到下划线的索引位置
        int underscoreIndex = imageURL.indexOf('_');

        String result = "";

        if (underscoreIndex != -1) {
            // 截取从下划线的位置开始到字符串的末尾
            result = imageURL.substring(underscoreIndex - 9);
        } else {
            throw new RuntimeException("图片链接截取失败");
        }

        return TomcatConfig.getImageAiUrl() + "/" + result;
    }
    
    /**
     * 图片处理
     * @param imageUrl
     * @return
     */
    public String uploadFileImageAi(String imageUrl){

//        //服务器文件上传路径
        String path = TomcatConfig.setUploadImageAiUrl() + Constants.DRAW_PREFIX + "_" + Seq.getId(Seq.uploadSeqType) + ".png";
//        本地文件上传路径
//        String path = "D:\\BaiduNetdiskDownload\\image-use\\" + Constants.DRAW_PREFIX + "_" + Seq.getId(Seq.uploadSeqType) + ".png";

        try{
            URL url = new URL(imageUrl);
            HttpURLConnection connection = (HttpURLConnection) url.openConnection();
            int responseCode = connection.getResponseCode();
            if (responseCode == HttpURLConnection.HTTP_OK) {
                InputStream inputStream = connection.getInputStream();
                OutputStream outputStream = new FileOutputStream(path);

                byte[] buffer = new byte[4096];
                int bytesRead;
                while ((bytesRead = inputStream.read(buffer)) != -1) {
                    outputStream.write(buffer, 0, bytesRead);
                }

                outputStream.close();
                inputStream.close();
            } else {
                throw new RuntimeException("文件无法下载");
            }
        }catch (IOException e){
            e.printStackTrace();
        }
        return path;
    }

    /**
     * JSON数据处理
     * @param imageContent
     * @return
     */
    public String jsonImageUrl(String imageContent){

        //解析json字符串
        JSONObject obj = JSON.parseObject(imageContent);

        //获取 "data"字段相应的JSON数组
        JSONArray dataArray = obj.getJSONArray("data");

        //获取第一个元素路径地址
        JSONObject dataObject = dataArray.getJSONObject(0);

        // 返回"url"字段的值
        return dataObject.getString("url");
    }
相关推荐
曼城周杰伦6 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
狸克先生13 小时前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
新加坡内哥谈技术16 小时前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
nbsaas-boot18 小时前
如何利用ChatGPT加速开发与学习:以BPMN编辑器为例
学习·chatgpt·编辑器
hunteritself1 天前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
Doker 多克1 天前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
曼城周杰伦2 天前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3
爱技术的小伙子2 天前
【ChatGPT】ChatGPT在多领域知识整合中的应用
chatgpt
学习前端的小z2 天前
【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
人工智能·gpt·chatgpt·aigc
段传涛2 天前
LLM( Large Language Models)典型应用介绍 1 -ChatGPT Large language models
人工智能·语言模型·chatgpt