SciPy
库的optimize
模块主要用于执行各种优化任务。
优化是寻找特定函数的最小值或最大值的过程,通常用于机器学习、数据分析、工程和其他领域。
scipy.optimize
提供了多种优化算法,包括梯度下降法、牛顿法、最小二乘法等,可以解决各种复杂的优化问题。
该模块还包含一些特定的函数,用于解决某些特定类型的优化问题,如多维非线性优化、约束优化、最小二乘问题等。
此外,scipy.optimize
还提供了一些工具,如多线程支持、边界条件处理、数值稳定性措施等,以提高优化的效率和准确性。
1. 主要功能
最优化 是数学学科中的一个重要研究领域,optimize
模块包含的各类函数能够帮助我们节省大量的计算时间和精力。
类别 | 说明 |
---|---|
优化 | 包含标量函数优化,局部优化,全局优化等各类方法 |
最小二乘法和曲线拟合 | 包含求解最小二乘法问题,各种拟合曲线的方法 |
求根 | 包含多种求根的方法,比如布伦特方法,牛顿-拉夫森方法等10来种求根方法 |
线性规划 | 内置多种线性规划算法以及混合整数线性规划计算等 |
分配问题 | 解决线性和分配问题,包括二次分配和图匹配问题的近似解等 |
工具函数 | 包含一些通用的计算方法,比如有限差分近似,海森近似,线搜索等计算函数 |
遗留函数 | 即将被淘汰的一些函数,不建议再继续使用 |
下面通过曲线拟合 和非线性方程组求解 两个示例演示optimize
模块的使用。
2. 曲线拟合示例
所谓曲线拟合 ,其实就是找到一个函数,能够尽可能的经过或接近一系列离散的点。
然后就可以用这个函数来预测离散点的变化趋势。
2.1. 最小二乘法
optimize
模块的最小二乘法拟合曲线需要定义一个目标函数 和一个残差函数 。
最小二乘法通过迭代寻找目标函数 中参数的最优值,
而残差函数 是用来计算目标函数的返回值 和实际值之间的误差的。
首先,加载需要拟合的离散数据。
python
import pandas as pd
data = pd.read_csv("d:/share/data/A0A01.csv")
data = data[data["zb"] == "A0A0101"]
data = data.sort_values("sj")
data.head()
数据来源:databook.top/nation/A0A (其中的A0A01.csv
)
然后,依据其中1978年~2022年 的居民人均可支配收入绘制散点图。
python
from matplotlib.ticker import MultipleLocator
import matplotlib.pyplot as plt
ax = plt.subplot()
ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)")
plt.xticks(rotation=45)
plt.show()
最后,用optimize
模块提供的最小二乘法拟合居民人均可支配收入的变化曲线。
python
from scipy.optimize import least_squares
# 目标函数
def target_func(p, x):
return p[0]*np.exp(p[1]*x) + p[2]
# 残差函数
def residual(p, x, dy):
return target_func(p, x) - dy
p0 = [1, 1, 0]
x = range(len(data))
y = data["value"]
# 最小二乘法迭代目标函数的参数
result = least_squares(residual, p0, args=(x, y))
ax = plt.subplot()
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)")
ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
# 这里的result.x就是迭代后的最优参数
ax.plot(x, target_func(result.x, x), color='g')
plt.xticks(rotation=45)
plt.show()
图中绿色的曲线就是拟合的曲线,根据拟合出的曲线和目标函数,
就可以预测以后的居民人均可支配收入的变化情况。
2.2. curve_fit方法
最小二乘法需要定义目标函数 和残差函数 ,使用起来有些繁琐,optimize
模块中还提供了一个curve_fit
函数。
可以简化曲线拟合的过程。
python
from scipy.optimize import curve_fit
# 目标函数
def curve_fit_func(x, p0, p1, p2):
return p0*np.exp(p1*x) + p2
# fitp 就是计算出的目标函数的最优参数
fitp, _ = curve_fit(curve_fit_func, x, y, [1, 1, 0])
ax = plt.subplot()
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)")
ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
ax.plot(x, curve_fit_func(x, *fitp), color='b')
plt.xticks(rotation=45)
plt.show()
蓝色的线就是拟合曲线,拟合结果和使用最小二乘法拟合出的是一样的,只是代码可以简化一些。
3. 非线性方程组求解示例
众所周知,手工求解非线性方程是非常困难的,如果经常遇到求解非线性方程的情况,optimize
模块绝对能成为你的一个称手工具。
3.1. 非线性方程
使用optimize
模块求解非线性方程非常简单。
比如方程: <math xmlns="http://www.w3.org/1998/Math/MathML"> 2 x + s i n ( x ) − x 3 = 0 2^x+sin(x)-x^3=0 </math>2x+sin(x)−x3=0
python
from scipy.optimize import root
f = lambda x: 2**x + np.sin(x) - x**3
result = root(f, [1, 1], method='hybr')
# result.x 是方程的解
result.x
# 运行结果:
array([1.58829918, 1.58829918])
实际使用时,将变量f
对应的方程换成你的方程即可。
注意 ,求解方程的 root
方法的参数method
,这个参数支持多种求解方程的方法,可以根据方程的特点选择不同的method
。
支持的method
列表可参考官方文档:docs.scipy.org/doc/scipy/r...
3.2. 非线性方程组
对于方程组,求解的方法如下:
比如方程组:\begin{cases} \begin{align*} x^2 +y-3 & =0 \\ (x-2)^2+y-1 & =0 \end{align*} \end{cases}
python
fs = lambda x: np.array(
[
x[0] ** 2 + x[1] - 3,
(x[0] - 2) ** 2 + x[1] - 1,
]
)
result = root(fs, [1, 1], method="hybr")
result.x
# 运行结果:
array([1.5 , 0.75])
方程组中方程个数多的话,直接添加到变量fs
的数组中即可。
4. 总结
总的来说,scipy.optimize
是一个强大且易用的优化工具箱,用于解决各种复杂的优化问题。
它对于需要优化算法的许多科学和工程领域都具有重要价值。
通过使用这个模块,用户可以节省大量时间和精力,同时还能保证优化的质量和准确性。