Pyspark综合案例(pyspark安装和java运行环境配置)

一、RDD对象

PySpark支持多种数据的输入,在输入完成后,都会得到一个:RDD类的对象

RDD全称为:弹性分布式数据集(Resilient Distributed Datasets)

PySpark针对数据的处理,都是以RDD对象作为载体,即:

  • 数据存储在RDD内
  • 各类数据的计算方法,也都是RDD的成员方法
  • RDD的数据计算方法,返回值依旧是RDD对象

PySpark的编程模型可以归纳为:准备数据到RDD -> RDD迭代计算 -> RDD导出为list、文本文件等,即:源数据 -> RDD -> 结果数据

二、Python 数据容器转 RDD 对象

PySpark支持通过SparkContext对象的parallelize成员方法,将:list、tuple、set、dict、str转换为PySpark的RDD对象

PySpark也支持通过SparkContext入口对象,来读取文件,来构建出RDD对象。

代码案例:

python 复制代码
"""
#通过PySpark代码加载数据,即数据输入
"""
from pyspark import SparkConf,SparkContext
conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf = conf)

# 通过parallelize方法将Python对象加载到Spark内,成为RDD对象
rdd1 = sc.parallelize([1, 2, 3, 4, 5])
rdd2 = sc.parallelize((1, 2, 3, 4, 5))
rdd3 = sc.parallelize("abcdefg")
rdd4 = sc.parallelize({1, 2, 3, 4, 5})
rdd5 = sc.parallelize({"key1": "value1", "key2": "value2"})

# 如果要查看RDD里面有什么内容,需要用collect()方法
print(rdd1.collect())
print(rdd2.collect())
print(rdd3.collect())
print(rdd4.collect())
print(rdd5.collect())

打印结果:

pyspark安装方法 :

第一种方法时命令行安装:pip install pyspark;

第二种方式是直接在Pycharm进行安装,如下图所示;

安装完成后,运行代码出现缺少Java环境依赖,需要配置java运行环境才可以运行Pyspark导入报对象,配置环境的过程可以参考博客教程:

java 环境配置(详细教程)_java环境配置_多加点辣也没关系的博客-CSDN博客

JDK 8.0 的安装包已上传资源包,希望可以帮助到大家!

相关推荐
陌上花开࿈2 小时前
调用第三方接口
java
浊酒南街2 小时前
决策树python实现代码1
python·算法·决策树
Aileen_0v02 小时前
【玩转OCR | 腾讯云智能结构化OCR在图像增强与发票识别中的应用实践】
android·java·人工智能·云计算·ocr·腾讯云·玩转腾讯云ocr
FreedomLeo13 小时前
Python机器学习笔记(十三、k均值聚类)
python·机器学习·kmeans·聚类
星光樱梦3 小时前
32. 线程、进程与协程
python
阿正的梦工坊3 小时前
深入理解 PyTorch 的 view() 函数:以多头注意力机制(Multi-Head Attention)为例 (中英双语)
人工智能·pytorch·python
西猫雷婶3 小时前
python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形
开发语言·python·opencv
桂月二二4 小时前
Java与容器化:如何使用Docker和Kubernetes优化Java应用的部署
java·docker·kubernetes
liuxin334455664 小时前
学籍管理系统:实现教育管理现代化
java·开发语言·前端·数据库·安全
海绵波波1074 小时前
flask后端开发(10):问答平台项目结构搭建
后端·python·flask