神经网络 04(神经网络的搭建)

一、神经网络的搭建

tf.Keras 中构建模有两种方式,一种是通过 Sequential 构建,一种是通过 Model 类构建。前者是按一定的顺序对层进行堆叠 ,而后者可以用来构建较复杂的网络模型。首先我们介绍下用来构建网络的全连接层:

python 复制代码
tf.keras.layers.Dense(
    units, activation=None, use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros')

units: 当前层中包含的神经元个数

Activation: 激活函数,relu,sigmoid等

use_bias: 是否使用偏置,默认使用偏置

Kernel_initializer: 权重的初始化方式,默认是Xavier初始化

bias_initializer: 偏置的初始化方式,默认为0

1.1 通过Sequential构建

Sequential() 提供一个层的列表,就能快速地建立一个神经网络模型,实现方法如下所示:

python 复制代码
# 导入相关的工具包
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# 定义一个Sequential模型,包含3层
model = keras.Sequential(
    [
        # 第一层(隐藏层):激活函数为relu,权重初始化为he_normal
        layers.Dense(3, activation="relu",
                     kernel_initializer="he_normal", name="layer1",input_shape=(3,)),
        # 第二层(隐藏层):激活函数为relu,权重初始化为he_normal
        layers.Dense(2, activation="relu",
                     kernel_initializer="he_normal", name="layer2"),
        # 第三层(输出层):激活函数为sigmoid,权重初始化为he_normal
        layers.Dense(2, activation="sigmoid",
                     kernel_initializer="he_normal", name="layer3"),
    ],
    name="my_Sequential" # 定义该模型的名字
)

# 展示模型结果
model.summary()

通过这种 sequential 的方式只能构建简单的序列模型,较复杂的模型没有办法实现。

1.2 利用function API构建

tf.keras 提供了 Functional API,建立更为复杂的模型,使用方法是将层作为可调用的对象并返回张量,并将输入向量和输出向量提供给 tf.keras.Modelinputsoutputs 参数,实现方法如下:

python 复制代码
# 导入工具包
import tensorflow as tf
# 定义模型的输入
inputs = tf.keras.Input(shape=(3,),name = "input")
# 第一层:激活函数为relu,其他默认
x = tf.keras.layers.Dense(3, activation="relu",name = "layer1")(inputs)
# 第二层:激活函数为relu,其他默认
x = tf.keras.layers.Dense(2, activation="relu",name = "layer2")(x)
# 第三层(输出层):激活函数为sigmoid
outputs = tf.keras.layers.Dense(2, activation="sigmoid",name = "layer3")(x)
# 使用Model来创建模型,指明输入和输出
model = tf.keras.Model(inputs=inputs, outputs=outputs,name="my_model") 

1.3 通过model的子类构建

通过 model 的子类构建模型,此时需要在 __init__ 中定义神经网络的层,在 call 方法中定义网络的前向传播过程,实现方法如下:

python 复制代码
# 导入工具包
import tensorflow as tf
# 定义model的子类
class MyModel(tf.keras.Model):
    # 在init方法中定义网络的层结构
    def __init__(self):
        super(MyModel, self).__init__()
        # 第一层:激活函数为relu,权重初始化为he_normal
        self.layer1 = tf.keras.layers.Dense(3, activation="relu",
                     kernel_initializer="he_normal", name="layer1",input_shape=(3,))
        # 第二层:激活函数为relu,权重初始化为he_normal
        self.layer2 =tf.keras.layers.Dense(2, activation="relu",
                     kernel_initializer="he_normal", name="layer2")
        # 第三层(输出层):激活函数为sigmoid,权重初始化为he_normal
        self.layer3 =tf.keras.layers.Dense(2, activation="sigmoid",
                     kernel_initializer="he_normal", name="layer3")
    # 在call方法中完成前向传播
    def call(self, inputs):
        x = self.layer1(inputs)
        x = self.layer2(x)
        return self.layer3(x)
# 实例化模型
model = MyModel()
# 设置一个输入,调用模型(否则无法使用summay())
x = tf.ones((1, 3))
y = model(x)
相关推荐
元宇宙时间3 小时前
RWA加密金融高峰论坛&星链品牌全球发布 —— 稳定币与Web3的香港新篇章
人工智能·web3·区块链
天涯海风5 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs7 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java7 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV8 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br8 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����9 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine9 小时前
机器学习——数据清洗
人工智能·机器学习
小猿姐9 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生10 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习