机器学习——生成分类数据的坐标系边界需要用到的技术方法

0、前言:

  • 如果遇到一种应用场景需要将x轴数据和y轴数据所有点映射到坐标系中,需要得到坐标系中x和y映射的坐标点,就要用到meshgrid把x和y映射到坐标系中,然后把得到的结果用ravel把结果转成一维的。
  • 用np.c_()把x数据和y数据堆叠在一起,就可以用来输入模型做训练。

1、numpy库中的meshgrid方法:

  • 该函数常用于在二维或三维空间中创建网格点坐标
  • 示例
python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
x = [1,2,3]
y = [4,5]
X,Y = np.meshgrid(x,y)
display(pd.DataFrame(X))
'''
	0	1	2
0	1	2	3
1	1	2	3
'''
display(pd.DataFrame(Y))
'''
	0	1	2
0	4	4   4
1	5	5	5

'''
# 组合
# 相交点
XY = np.c_[X.ravel(),Y.ravel()]
display(pd.DataFrame(XY))
'''
	0	1
0	1	4
1	2	4
2	3	4
3	1	5
4	2	5
5	3	5
'''
  • 理解:通过meshgrid方法,就是相当于把输入的x坐标和输入的y坐标组合在一起对应成网格点,然后把网格点对应x坐标和y坐标以网格点的形式返回。例如我们看到显示返回的x坐标的时候,每一列都是同一个数,返回y坐标中每一行都是同一个数。

2、np.ravel() :

  • 在 NumPy 中,你可以使用 np.ravel() 方法来将一个多维数组转换成一个一维数组。
python 复制代码
a = np.array(
    [[1,1,1],
     [2,2,2],
     [3,3,3]]
)
a.ravel() # array([1, 1, 1, 2, 2, 2, 3, 3, 3])

3、np.c_[a,b]:

  • numpy中的.c_方法把他们按照坐标的形式组合在一起。np.c_ 或 np.column_stack 将输入的数组以列为主导(左右组合)进行堆叠,生成一个新的数组。输入数组的每一行都会成为新数组的一列。这对于需要将多个一维数组组合成二维数组的情况非常有用。
python 复制代码
a = np.array(
    [[1,1,1],
     [2,2,2],
     [3,3,3]]
)
b = np.array(
    [[4,4,4],
     [5,5,5],
     [6,6,6]]
)
A = np.c_[a,b]
'''
array([[1, 1, 1, 4, 4, 4],
       [2, 2, 2, 5, 5, 5],
       [3, 3, 3, 6, 6, 6]])
'''

4、sklearn.datasets.make_blobs:

  • 这是一个Scikit-learn库中的函数,用于创建带有随机分隔的聚类数据集。
  • 示例:
python 复制代码
data,target = make_blobs()
'''
参数:
n_samples=100,样本数量,行数
n_features=2, 特征数量,列数
centers=None,中心点个数,默认3
cluster_std=1.0,聚集,表示每一堆点的聚集程度
center_box=(-10,10),表示中心的范围
'''
plt.scatter(data[:,0],data[:,1],c=target)

相关推荐
Akamai中国8 分钟前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算·云服务
陈增林11 分钟前
基于PyQt5的AI文档处理工具
人工智能
BeingACoder21 分钟前
【SAA】SpringAI Alibaba学习笔记(二):提示词Prompt
java·人工智能·spring boot·笔记·prompt·saa·springai
Acrelhuang28 分钟前
覆盖全场景需求:Acrel-1000 变电站综合自动化系统的技术亮点与应用
大数据·网络·人工智能·笔记·物联网
LHZSMASH!1 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
Luke Ewin1 小时前
内网私有化分布式集群部署语音识别接口
人工智能·分布式·语音识别·asr·funasr·通话语音质检·区分说话人
青云交1 小时前
Java 大视界 --Java 大数据在智慧农业农产品市场价格预测与种植决策支持中的应用实战
机器学习·智慧农业·数据安全·农业物联网·价格预测·java 大数据·种植决策
萤丰信息1 小时前
智慧园区系统:开启园区管理与运营的新时代
java·大数据·人工智能·安全·智慧城市·智慧园区
Dfreedom.1 小时前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数
领航猿1号1 小时前
全参数DeepSeek(671B)企业部署方案
人工智能·ai-native