图像的几何变换(缩放、平移、旋转)

图像的几何变换

学习目标

  • 掌握图像的缩放、平移、旋转等
  • 了解数字图像的仿射变换和透射变换

1 图像的缩放

缩放是对图像的大小进行调整,即 使图像放大或缩小

cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)

参数:

  • src :输入图像
  • dsize ;绝对尺寸 ,直接指定调整后图像的大小
  • fx,fy :相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可
  • interpolation: 插值方法

代码实现

python 复制代码
import cv2 as cv
#读取图片

img1 = cv.imread('lena.png')

#图像的缩放

#法1    :绝对尺寸

rows, cols = img1.shape[:2]
res  = cv.resize(img1 , (2*cols,2*rows),interpolation=cv.INTER_CUBIC)

#法二  :相对尺寸
res1 = cv.resize(img1,None,fx=0.5,fy=0.5)

#图像显示
cv.imshow("original",img1)
cv.imshow("enlarge",res)
cv.imshow("shrink",res1)
cv.waitKey(0)

结果展示

2图像的平移

代码实现

python 复制代码
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']

#读取图像
img1 = cv.imread("lena.png")

#图像的平移
rows ,cols = img1.shape[:2]
M= np.float32([[1,0,100],[0,1,50]])   #平移矩阵
dst = cv.warpAffine(img1,M,(cols,rows))

#图像的显示
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(7,4),dpi=100)
axes[0].imshow(img1[:,:,::-1])
axes[0].set_title("原图")

axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("平移后的结果")
plt.show()

结果展示

3 图像的旋转






代码实现

python 复制代码
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']


#读取图像
img = cv.imread("lena.png")

#旋转图像

rows ,cols = img.shape[:2]
#生成旋转矩阵
M = cv.getRotationMatrix2D((cols/2 ,rows/2),90,1)
#进行旋转变换
dst = cv.warpAffine(img,M,(cols,rows))


#图像展示
fig ,axes = plt.subplots(nrows=1,ncols=2,figsize=(5,4),dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图")

axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("旋转后的结果")

plt.show()

M = cv.getRotationMatrix2D((cols/2 ,rows/2),90,1)

  • cols/2 ,rows/2 :旋转中心
  • 90 : 逆时针旋转角度
  • 1:缩放比例(不进行缩放)

结果展示

相关推荐
刽子手发艺1 小时前
Selenium+OpenCV处理滑块验证问题
opencv·selenium·webpack
Luis Li 的猫猫2 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
木觞清4 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO8 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
南风过闲庭9 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵9 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标
MYT_flyflyfly9 小时前
计算机视觉-尺度不变区域
人工智能·计算机视觉
何小Ai同学9 小时前
Deepseek赚钱密码:小场景闭环如何让你快速盈利?
人工智能·架构·deepseek