图像的几何变换(缩放、平移、旋转)

图像的几何变换

学习目标

  • 掌握图像的缩放、平移、旋转等
  • 了解数字图像的仿射变换和透射变换

1 图像的缩放

缩放是对图像的大小进行调整,即 使图像放大或缩小

cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)

参数:

  • src :输入图像
  • dsize ;绝对尺寸 ,直接指定调整后图像的大小
  • fx,fy :相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可
  • interpolation: 插值方法

代码实现

python 复制代码
import cv2 as cv
#读取图片

img1 = cv.imread('lena.png')

#图像的缩放

#法1    :绝对尺寸

rows, cols = img1.shape[:2]
res  = cv.resize(img1 , (2*cols,2*rows),interpolation=cv.INTER_CUBIC)

#法二  :相对尺寸
res1 = cv.resize(img1,None,fx=0.5,fy=0.5)

#图像显示
cv.imshow("original",img1)
cv.imshow("enlarge",res)
cv.imshow("shrink",res1)
cv.waitKey(0)

结果展示

2图像的平移

代码实现

python 复制代码
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']

#读取图像
img1 = cv.imread("lena.png")

#图像的平移
rows ,cols = img1.shape[:2]
M= np.float32([[1,0,100],[0,1,50]])   #平移矩阵
dst = cv.warpAffine(img1,M,(cols,rows))

#图像的显示
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(7,4),dpi=100)
axes[0].imshow(img1[:,:,::-1])
axes[0].set_title("原图")

axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("平移后的结果")
plt.show()

结果展示

3 图像的旋转






代码实现

python 复制代码
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']


#读取图像
img = cv.imread("lena.png")

#旋转图像

rows ,cols = img.shape[:2]
#生成旋转矩阵
M = cv.getRotationMatrix2D((cols/2 ,rows/2),90,1)
#进行旋转变换
dst = cv.warpAffine(img,M,(cols,rows))


#图像展示
fig ,axes = plt.subplots(nrows=1,ncols=2,figsize=(5,4),dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图")

axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("旋转后的结果")

plt.show()

M = cv.getRotationMatrix2D((cols/2 ,rows/2),90,1)

  • cols/2 ,rows/2 :旋转中心
  • 90 : 逆时针旋转角度
  • 1:缩放比例(不进行缩放)

结果展示

相关推荐
amhjdx43 分钟前
星巽短剧以科技赋能影视创新,构建全球短剧新生态!
人工智能·科技
听风南巷1 小时前
机器人全身控制WBC理论及零空间原理解析(数学原理解析版)
人工智能·数学建模·机器人
美林数据Tempodata2 小时前
“双新”指引,AI驱动:工业数智应用生产性实践创新
大数据·人工智能·物联网·实践中心建设·金基地建设
电科_银尘2 小时前
【大语言模型】-- 私有化部署
人工智能·语言模型·自然语言处理
翔云 OCR API3 小时前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
南方者4 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
庄周迷蝴蝶4 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran4 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
大千AI助手4 小时前
Prefix-Tuning:大语言模型的高效微调新范式
人工智能·神经网络·自然语言处理·llm·prefix-tuning·大千ai助手·前缀微调
雾江流4 小时前
RikkaHub 1.6.11 | 开源的本地大型语言模型聚合应用,支持多种AI服务提供商
人工智能·语言模型·自然语言处理·软件工程