分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测

目录

预测效果




基本介绍

1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测;

2.运行环境为Matlab2018b;

3.输入多个特征,分四类预测;

4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;

5.可视化展示分类准确率。

模型描述

SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。

具体流程如下:

数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。

特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。

AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。

模型评估:对预测结果进行评估。

模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。

预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。

该方法的优点在于,SVM模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复SVM-Adaboost支持向量机结合AdaBoost多输入分类预测
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
俊俊谢12 小时前
【机器学习】python使用支持向量机解决兵王问题(基于libsvm库)
python·机器学习·支持向量机·svm·libsvm
roman_日积跬步-终至千里1 天前
【计算机视觉(11)】损失函数与优化基础篇:如何训练线性分类器
机器学习·支持向量机·计算机视觉
YIFAN.WANG2 天前
AI中的优化7-有约束非线性规划
人工智能·机器学习·支持向量机
feifeigo1232 天前
SVM分类在高光谱遥感图像分类与预测中的应用
算法·支持向量机·分类
玦尘、3 天前
《统计学习方法》第7章——支持向量机SVM(下)【学习笔记】
机器学习·支持向量机·学习方法
fengfuyao9855 天前
基于MATLAB的支持向量机在故障诊断中的应用例程
开发语言·支持向量机·matlab
hoiii1876 天前
MATLAB实现HOG特征提取与SVM行人检测
开发语言·支持向量机·matlab
玦尘、6 天前
《统计学习方法》第7章——支持向量机SVM(上)【学习笔记】
学习·支持向量机·学习方法
fie88896 天前
基于BP神经网络和支持向量机实现风机故障诊断
人工智能·神经网络·支持向量机
qq19226386 天前
【ABS防抱死 汽车动力学 Simulink仿真模型】 可控制切换各种路面情况(干、湿、雪)和...
支持向量机