python学智能算法(三十六)|SVM-拉格朗日函数求解(中)-软边界

【1】引言

前序学习进程中,已经对常规SVM拉格朗日方程求解展开了探索。

但面对软边界SVM拉格朗日方程,对求解提出了新的要求。

【2】方程求解

软边界拉格朗日方程表达式为:
L ( w , b , ξ , α , μ ) = 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 n ξ i − ∑ i = 1 n α i [ y i ( w ⋅ x i + b ) − 1 + ξ i ] − ∑ i = 1 n μ i ξ i L(w,b,\xi,\alpha,\mu)=\frac{1}{2}||w||^2+C\sum_{i=1}^{n}{\xi_{i}}-\sum_{i=1}^{n}\alpha_{i}[y_{i}(w\cdot x_{i}+b)-1+\xi_{i}]-\sum_{i=1}^{n}\mu_{i}\xi_{i} L(w,b,ξ,α,μ)=21∣∣w∣∣2+Ci=1∑nξi−i=1∑nαi[yi(w⋅xi+b)−1+ξi]−i=1∑nμiξi

【2.1】对 w w w求偏导数

令 L 对 w L对w L对w的偏导数为0:
∂ L ∂ w = w − ∑ i = 1 n α i y i x i = 0 \frac{\partial L}{\partial w}=w-\sum_{i=1}^{n}\alpha_{i}y_{i}x_{i}=0 ∂w∂L=w−i=1∑nαiyixi=0

获得:
w = ∑ i = 1 n α i y i x i w=\sum_{i=1}^{n}\alpha_{i}y_{i}x_{i} w=i=1∑nαiyixi

可见,超平面的法向量 w w w可以由样本 x i x_{i} xi,标签 y i y_{i} yi和乘子 α i \alpha_{i} αi线性表示。

【2.2】对 b b b求偏导数

令 L 对 b L对b L对b的偏导数为0:
∂ L ∂ b = − ∑ i = 1 n α i y i = 0 \frac{\partial L}{\partial b}=-\sum_{i=1}^{n}\alpha_{i}y_{i}=0 ∂b∂L=−i=1∑nαiyi=0

获得:
∑ i = 1 n α i y i = 0 \sum_{i=1}^{n}\alpha_{i}y_{i}=0 i=1∑nαiyi=0

可见,标签 y i y_{i} yi和乘子 α i \alpha_{i} αi的加权和为0。

【2.3】对 ξ i \xi_{i} ξi求偏导数

令 L 对 ξ i L对\xi_{i} L对ξi的偏导数为0:
∂ L ∂ ξ i = C − α i − μ i = 0 \frac{\partial L}{\partial \xi_{i}}=C-\alpha_{i}-\mu_{i}=0 ∂ξi∂L=C−αi−μi=0

获得:
μ i = C − α i \mu_{i}=C-\alpha_{i} μi=C−αi

可见,乘子 μ i \mu_{i} μi可以由 C C C和 α i \alpha_{i} αi表示,因为前序已经规定 μ i ≥ 0 \mu_{i}\geq0 μi≥0和 α i ≥ 0 \alpha_{i}\geq0 αi≥0,所以有:
0 ≤ α i ≤ C 0\leq\alpha_{i}\leq C 0≤αi≤C

【2.4】将偏导数结果代入原方程

首先是 w w w项:
1 2 ∣ ∣ w ∣ ∣ 2 = 1 2 ( ∑ i = 1 n α i y i x i ) ( ∑ j = 1 n α j y j x j ) = 1 2 ∑ i , j = 1 n α i α j y i y j ( x i ⋅ x j ) \frac{1}{2}||w||^2=\frac{1}{2}(\sum_{i=1}^{n}{\alpha_{i}y_{i}x_{i}})(\sum_{j=1}^{n}{\alpha_{j}y_{j}x_{j}})\\= \frac{1}{2}\sum_{i,j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}(x_{i}\cdot x_{j}) 21∣∣w∣∣2=21(i=1∑nαiyixi)(j=1∑nαjyjxj)=21i,j=1∑nαiαjyiyj(xi⋅xj)

然后是 ξ i \xi_{i} ξi项:
C ∑ ξ i − ∑ α i ξ i − ∑ μ i ξ i = C ∑ ξ i − ∑ α i ξ i − ∑ ( C − α i ) ξ i = 0 C\sum{\xi_{i}}-\sum\alpha_{i}\xi_{i}-\sum\mu_{i}\xi_{i}\\=C\sum{\xi_{i}}-\sum\alpha_{i}\xi_{i}-\sum(C-\alpha_{i})\xi_{i} \\=0 C∑ξi−∑αiξi−∑μiξi=C∑ξi−∑αiξi−∑(C−αi)ξi=0

整理后获得的方程为:
L ( w , b , ξ , α , μ ) = ∑ α i − 1 2 ∑ i , j = 1 n α i α j y i y j ( x i ⋅ x j ) L(w,b,\xi,\alpha,\mu)=\sum{\alpha_{i}}-\frac{1}{2}\sum_{i,j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}(x_{i}\cdot x_{j}) L(w,b,ξ,α,μ)=∑αi−21i,j=1∑nαiαjyiyj(xi⋅xj)

【3】总结

学习了SVM软边界拉格朗日方程求解的基本方法。

相关推荐
疯狂的Alex9 分钟前
半精度浮点在AI推理中的应用:C++23新类型与性能测试
人工智能·c++23
木头左10 分钟前
跨周期共振效应在ETF网格参数适配中的应用技巧
开发语言·python·算法
青春不败 177-3266-052010 分钟前
基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化实践技术应用
人工智能·pytorch·深度学习·目标检测·生态学·遥感
爱蹦跶的精灵13 分钟前
降级版本Pillow解决freetypefont has no attribute getsize问题
python·pillow
诸葛箫声21 分钟前
基于PyTorch的CIFAR-10图像分类项目总结
人工智能·pytorch·分类
en-route31 分钟前
从零开始学神经网络——GRU(门控循环单元)
人工智能·深度学习·gru
说私域37 分钟前
基于开源AI大模型AI智能名片S2B2C商城小程序的产地优势产品营销策略研究
人工智能·小程序·开源
说私域39 分钟前
蒸汽机革命后工业生产方式的变革与AI智能名片S2B2C商城小程序的影响
大数据·人工智能·小程序
一人の梅雨1 小时前
亚马逊 MWS 关键字 API 实战:关键字搜索商品列表接口深度解析与优化方案
python·spring
MongoVIP1 小时前
AI提示词应用
人工智能·职场和发展·简历优化·简历制作