Continual Pre-Training of Large Language Models: How to (re)warm your model?

本文是LLM系列文章,针对《Continual Pre-Training of Large Language Models: How to (re)warm your model?》的翻译。

大型语言模型的持续预训练:如何(重新)预热你的模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 设置](#2 设置)
  • [3 相关工作](#3 相关工作)
  • [4 持续加热](#4 持续加热)
  • [5 讨论/局限性](#5 讨论/局限性)
  • [6 结论](#6 结论)

摘要

大型语言模型(LLM)通常在数十亿个token上进行预训练,但一旦新数据可用,就会重新启动过程。一个更便宜、更有效的解决方案是能够对这些模型进行持续的预训练,即用新数据更新预训练的模型,而不是从头开始重新训练。然而,由新数据引起的分布偏移通常会导致过去数据的性能下降。在这项工作中,我们研究了不同热身策略的效果。我们的假设是,在新的数据集上进行训练时,必须重新提高学习率以提高计算效率。我们研究了在Pile上预训练的模型(上游数据,300Btoken)的热身阶段,同时我们继续在SlimPapajama上预训练(下游数据,297Btoken),遵循线性热身和余弦衰减时间表。我们在Pythia410M语言模型架构上进行了所有实验,并通过验证困惑来评估性能。我们试验了不同的训练前检查点、不同的最大学习率和不同的热身时间。我们的研究结果表明,虽然重新武装模型首先增加了上游和下游数据的损失,但从长远来看,它提高了下游性能,优于从头开始训练的模型------即使是大型下游数据集。

1 引言

2 设置

3 相关工作

4 持续加热

5 讨论/局限性

6 结论

我们的实验表明,预热到更高的最大学习率有助于在Pile上预先训练的模型适应SlimPajama,而较小的最大学习速率可以保持Pile上的性能。然而,在这两种情况下,重新武装的模型都比从头开始训练的模型有所改进。这些结果促使在新的数据集上使用持续的预训练,而不是从头开始训练。然而,还需要更多的研究来为更大的模型规模、不同的分布变化建立类似的结果,并验证这种策略可以重复应用于更新模型。

相关推荐
dlraba80224 分钟前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE40 分钟前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
小憩-2 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋3 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ3 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL3 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
却道天凉_好个秋3 小时前
计算机视觉(八):开运算和闭运算
人工智能·计算机视觉·开运算与闭运算
无风听海3 小时前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
JoinApper3 小时前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
飞哥数智坊4 小时前
即梦4.0实测:我真想对PS说“拜拜”了!
人工智能