Retinexformer 论文阅读笔记

Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement

  • 清华大学、维尔兹堡大学和苏黎世联邦理工学院在ICCV2023的一篇transformer做暗图增强的工作,开源。
  • 文章认为,Retinex的 I = R ⊙ L I=R\odot L I=R⊙L假设干净的R和L,但实际上由于噪声,并不干净,所以分别为L和R添加干扰项,把公式改成如下:
  • 本文采用先预测 L ‾ \overline L L再使用 I ⊙ L ‾ I\odot\overline L I⊙L来预测增强结果的retinex范式。结合上面公式可以得到:
  • 其中第一项是因为假设 L ⊙ L ‾ = 1 L\odot\overline L=1 L⊙L=1,所以第一项是我们要的增加结果,是干净的R,而第二项是由于 L ^ \hat L L^引进的干扰,即过曝或欠曝的干扰,第三项是 R ^ \hat R R^引进的干扰,即噪声和伪影。第二项第三项统称为corruption,得到下式:

    由于 I l u I_{lu} Ilu还包含corruption,它并不是我们要的最终增强结果。我们可以先估计 I l u I_{lu} Ilu,再将其中的C去掉,得到最终的增强结果
  • 网络结构如下图所示,其中 L p L_p Lp是图片的三通道均值。下面的图对模块的展开方式有点奇怪。其实就是对concate后的亮度图和原图,提取 L ‾ \overline L L和特征 F l u F_{lu} Flu,然后用 F l u F_{lu} Flu对后面的修复过程中transformer 的V 进行rescale,也就是用在了illumination-guided attention block。后面的修复过程就是把初步的增强结果进行细化,抑制过曝区域,去噪的过程。
  • 实验结果如下图所示,只给了PSNR和SSIM,不过没有和LLFlow比,所以区区22的PSNR也敢称SOTA。
  • 也比较了exdark上的增强结果和多个数据集上的user study
  • 个人感觉这篇工作没什么亮点,就是搞网络结构,但思路又不是特别亮眼,效果也没有特别好,还没有给lpips niqe LOE等指标。
相关推荐
优雅的潮叭5 小时前
c++ 学习笔记之 shared_ptr
c++·笔记·学习
claider6 小时前
Vim User Manual 阅读笔记 usr_08.txt Splitting windows 窗口分割
笔记·编辑器·vim
am心6 小时前
学习笔记-用户下单
笔记·学习
有Li9 小时前
DACG:用于放射学报告生成的双重注意力和上下文引导模型/文献速递-基于人工智能的医学影像技术
论文阅读·人工智能·文献·医学生
要做朋鱼燕10 小时前
【AES加密专题】3.工具函数的编写(1)
笔记·密码学·嵌入式·aes
嵌入式知行合一11 小时前
时间管理方法论
笔记
儒雅的晴天11 小时前
git笔记
笔记·git
半夏知半秋11 小时前
kcp学习-通用的kcp lua绑定
服务器·开发语言·笔记·后端·学习
中屹指纹浏览器12 小时前
指纹浏览器底层沙箱隔离技术实现原理与架构优化
经验分享·笔记
小裕哥略帅13 小时前
PMP知识--五大过程组
笔记·学习