Python 并行计算

python 复制代码
from joblib import Parallel, delayed  
import time  
  
# 定义一个函数,模拟一个耗时的操作  
def slow_function(n):  
    time.sleep(n)  # 模拟耗时  
    return n * n  
  
# 创建一个包含数字的列表  
numbers = [1, 2, 3, 4, 5]  
  
# 使用Parallel和delayed来并行地对每个数字执行slow_function  
results = Parallel(n_jobs=-1)(delayed(slow_function)(n) for n in numbers)  
  
# 打印结果  
print(results)

在这个示例中,我们定义了一个模拟耗时操作的函数slow_function。然后,我们创建了一个包含数字的列表numbers。通过使用Parallel和delayed,我们并行地对列表中的每个数字执行了slow_function函数。最后,我们打印了结果。

请注意,在使用Parallel时,你可以通过设置n_jobs参数来控制并行任务的数量。在上面的示例中,我们设置了n_jobs=-1,这意味着用最大资源进行并行计算。

如果函数有两个变量,代码如下:

python 复制代码
from joblib import Parallel, delayed  
import time  
  
# 定义一个函数,模拟一个耗时的操作,接受两个变量  
def slow_function(x, y):  
    time.sleep(x + y)  # 模拟耗时  
    return x * y  
  
# 创建一个包含输入变量的列表  
inputs = [(1, 2), (3, 4), (5, 6)]  
  
# 使用Parallel和delayed来并行地对每个输入执行slow_function  
results = Parallel(n_jobs=3)(delayed(slow_function)(x, y) for x, y in inputs)  
  
# 打印结果  
print(results)

在这个示例中,我们定义了一个函数slow_function,它接受两个变量x和y。然后,我们创建了一个包含输入变量的列表inputs,其中每个元素都是一个元组,包含两个变量。通过使用Parallel和delayed,我们并行地对列表中的每个输入执行了slow_function函数。最后,我们打印了结果。

请注意,在使用Parallel时,你可以通过设置n_jobs参数来控制并行任务的数量。在上面的示例中,我们设置了n_jobs=3,这意味着最多同时执行3个任务。你可以根据自己的需求调整这个参数。

相关推荐
轻竹办公PPT几秒前
AI一键生成年终总结PPT
人工智能·python·powerpoint
是Dream呀几秒前
昇腾平台 PyTorch 迁移实操:从环境搭建到精度达标的完整步骤
人工智能·pytorch·python·昇腾
lxmyzzs6 分钟前
【图像算法 - 36】医疗应用:基于 YOLOv12 与 OpenCV 的高精度脑肿瘤检测系统实现
python·深度学习·opencv·yolo·计算机视觉·脑肿瘤检测
工藤学编程6 分钟前
零基础学AI大模型之Milvus实战:Attu可视化安装+Python整合全案例
人工智能·python·milvus
Elnaij8 分钟前
从C++开始的编程生活(14)——容器适配器——stack和queue
开发语言·c++
FAREWELL0007510 分钟前
Lua学习记录(5) --- Lua中的协同程序 也称线程Coroutine的介绍
开发语言·学习·lua
学不完了是吧11 分钟前
“小白专属”python字符串处理文档
开发语言·python
☆光之梦☆14 分钟前
《openGauss全密态与防篡改账本数据库:云上数据安全与可信的新范式》
数据库·python
Maya动画技术14 分钟前
python的py转pyd方法(cython)
开发语言·python·spring
找了一圈尾巴14 分钟前
Python 学习-深入理解 Python 进程、线程与协程(上)
python·学习·并发