Lost in the Middle: How Language Models Use Long Contexts

本文是LLM系列文章,针对《Lost in the Middle: How Language Models Use Long Contexts》的翻译。

迷失在中间:语言模型如何使用长上下文

  • 摘要
  • [1 引言](#1 引言)
  • [2 语言模型](#2 语言模型)
  • [3 多文档问答](#3 多文档问答)
  • [4 语言模型如何从输入上下文中检索?](#4 语言模型如何从输入上下文中检索?)
  • [5 为什么语言模型很难使用它们的整个输入上下文?](#5 为什么语言模型很难使用它们的整个输入上下文?)
  • [6 更多的背景总是更好吗?开放领域QA案例研究](#6 更多的背景总是更好吗?开放领域QA案例研究)
  • [7 相关工作](#7 相关工作)
  • [8 结论](#8 结论)

摘要

虽然最近的语言模型能够将长上下文作为输入,但人们对它们使用长上下文的情况知之甚少。我们分析了语言模型在两项任务中的性能,这两项任务需要在输入上下文中识别相关信息:多文档问答和键值检索。我们发现,当相关信息出现在输入上下文的开头或结尾时,性能通常最高,而当模型必须在长上下文的中间访问相关信息时,性能会显著降低。此外,即使对于显式长上下文模型,性能也会随着输入上下文的增长而显著降低。我们的分析提供了对语言模型如何使用其输入上下文的更好理解,并为未来的长上下文模型提供了新的评估协议。

1 引言

2 语言模型

3 多文档问答

4 语言模型如何从输入上下文中检索?

5 为什么语言模型很难使用它们的整个输入上下文?

6 更多的背景总是更好吗?开放领域QA案例研究

7 相关工作

8 结论

我们通过一系列对照实验,实证研究了语言模型如何使用长输入上下文,这两项任务需要在上下文中识别和使用相关信息:多文档问答和键值检索。我们发现,语言模型通常很难在长输入上下文中使用信息,并且随着输入上下文的增长,性能会下降。我们对(i)模型架构、(ii)查询感知上下文化和(iii)指令调整的作用进行了初步调查,以更好地了解这些因素中的每一个可能如何影响语言模型如何使用上下文。最后,我们通过一个开放领域问答的实际案例研究得出结论,发现语言模型读者的表现在检索者回忆之前就已经饱和了。我们的结果和分析提供了对语言模型如何使用其输入上下文的更好理解,并为未来的长上下文模型提供了新的评估协议。

相关推荐
ar01233 小时前
AR远程协助作用
人工智能·ar
北京青翼科技3 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航3 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
计算机小手4 小时前
一个带Web UI管理的轻量级高性能OpenAI模型代理网关,支持Docker快速部署
经验分享·docker·语言模型·开源软件
陈天伟教授4 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪5 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06165 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor5 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES5 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67895 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养