对抗生成网络总结

对一些基本的对抗生成网络的总结。部分内容整理自Teeyohuang's blog

文章目录

GAN (NeurIPS, 2014)

Generative adversarial nets

m i n G m a x D V ( D , G ) = E x ∼ P d a t a ( x ) [ l o g D ( x ) ] + E z ∼ P z ( x ) [ l o g ( 1 − D ( G ( x ) ) ) ] min_Gmax_DV(D,G) = E_{x\sim~P_{data}(x)}[logD(x)] + E_{z\sim~P_{z}(x)}[log(1-D(G(x)))] minGmaxDV(D,G)=Ex∼ Pdata(x)[logD(x)]+Ez∼ Pz(x)[log(1−D(G(x)))].

在实际训练的过程中,可以通过maximize logD(G(x))来训练G。

CGAN

Conditional generative adversarial nets

Pytorch版本代码

原始GAN的生成器G学到了数据的分布,生成出来的图片其实是随机的,也就是说这个G的生成过程处于一种没有指导的状态,虽然生成的图片,比如mnist数据集来说,生成的的确是数字,但是却没有具体的说是什么数字。 cGAN相当于在原始GAN的基础上加上一个条件:condition,以此来指导G的生成过程。
m i n G m a x D V ( D , G ) = E x ∼ P d a t a ( x ) [ l o g D ( x ∣ y ) ] + E z ∼ P z ( z ) [ l o g ( 1 − D ( G ( z ∣ y ) ) ) ] min_Gmax_DV(D,G) = E_{x\sim~P_{data}(x)}[logD(x|y)] + E_{z\sim~P_{z}(z)}[log(1-D(G(z|y)))] minGmaxDV(D,G)=Ex∼ Pdata(x)[logD(x∣y)]+Ez∼ Pz(z)[log(1−D(G(z∣y)))]

y作为条件,和数据x以及噪声z同时分别进入D和G中。

DCGAN

unsupervised representation learning with deep convolutional generative adversarial networks

Pytorch版本代码

该网络主要使用卷积层,之前的网络用的是全连接层。

StackGAN

**StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks**

基于对CGAN的改进,CGAN无法生成清晰大图,StackGAN希望通过一个描述C,产生一张256x256的图像。通过两个generator实现,第一个generator产生64x64的小图,然后把结果放入第二个generator中生成256x256的大图。

详细内容

Pix2Pix (CVPR, 2017)

Image-to-image translation with conditional adversarial networks

本篇论文的核心思想并不复杂,是借鉴了conditional-GAN的思想。但pix2pix的generator的输入端只有条件y作为输入而没有噪声z。最终训练完成后可以从一张图A变换到另一张图B。

We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.

CycleGAN (ICCV, 2017)

Unpaired image-to-image translation using cycle-consistent adversarial networks

CycleGAN详细解读

创新点:源于和目标域之间,无需建立训练数据一对一映射(对比pix2pix),就可实现风格迁移。

在CycleGAN中,不仅需要生成器产生的图片y'和数据集Y中的图片画风一样,还需要y'和输入图片x的内容一样。

  • Loss function: Loss GAN + Loss cycle
    • Loss cycle: 将y'放入生成器F中,产生的新图片x'与原始x尽可能相似。即F(G(x))=x。
    • Loss GAN

SRGAN (CVPR, 2017)

**Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network**

首次使用生成对抗网络(GAN)应用于图像超分辨率(SR)

SRGAN论文阅读笔记

StyleGAN (CVPR, 2019)

A style-based generator architecture for generative adversarial networks

StyleGAN 用风格(style)来影响人脸的姿态、身份特征等,用噪声 ( noise ) 来影响头发丝、皱纹、肤色等细节部分。

StyleGAN论文超详细解读

相关推荐
zm-v-159304339866 分钟前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室1 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI1 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20061 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水6 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室7 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿7 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说8 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js