AWS SAA-C03 #49

A company stores call transcript files on a monthly basis. Users access the files randomly within 1 year of the call, but users access the files infrequently after 1 year. The company wants to optimize its solution by giving users the ability to query and retrieve files that are less than 1-year-old as quickly as possible. A delay in retrieving older files is acceptable.

Which solution will meet these requirements MOST cost-effectively?

A. Store individual files with tags in Amazon S3 Glacier Instant Retrieval. Query the tags to retrieve the files from S3 Glacier Instant Retrieval.

B. Store individual files in Amazon S3 Intelligent-Tiering. Use S3 Lifecycle policies to move the files to S3 Glacier Flexible Retrieval after 1 year. Query and retrieve the files that are in Amazon S3 by using Amazon Athena. Query and retrieve the files that are in S3 Glacier by using S3 Glacier Select.

C. Store individual files with tags in Amazon S3 Standard storage. Store search metadata for each archive in Amazon S3 Standard storage. Use S3 Lifecycle policies to move the files to S3 Glacier Instant Retrieval after 1 year. Query and retrieve the files by searching for metadata from Amazon S3.

D. Store individual files in Amazon S3 Standard storage. Use S3 Lifecycle policies to move the files to S3 Glacier Deep Archive after 1 year. Store search metadata in Amazon RDS. Query the files from Amazon RDS. Retrieve the files from S3 Glacier Deep Archive.


The most cost-effective solution would be Option B.

Storing individual files in Amazon S3 Intelligent-Tiering allows for automatic cost savings as the access patterns change, without performance impact or operational overhead. Using S3 Lifecycle policies to move the files to S3 Glacier Flexible Retrieval after 1 year is a cost-effective solution for infrequently accessed data where retrieval times of a few minutes to hours are acceptable.

You can query and retrieve the files that are in Amazon S3 by using Amazon Athena , which is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. For the files that are in S3 Glacier, you can use S3 Glacier Select to retrieve only the data you need from an archive, which can further save costs.

This solution meets the requirement of quick retrieval for files less than 1-year-old and acceptable delay for older files, while optimizing costs.

相关推荐
fen_fen1 小时前
用户信息表建表及批量插入 100 条数据(MySQL/Oracle)
数据库·mysql·oracle
马克Markorg8 小时前
常见的向量数据库和具有向量数据库能力的数据库
数据库
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
helloworldandy10 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
数据知道12 小时前
PostgreSQL 故障排查:如何找出数据库中最耗时的 SQL 语句
数据库·sql·postgresql
qq_124987075312 小时前
基于SSM的动物保护系统的设计与实现(源码+论文+部署+安装)
java·数据库·spring boot·毕业设计·ssm·计算机毕业设计
枷锁—sha12 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
Coder_Boy_12 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
Gain_chance12 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
此生只爱蛋12 小时前
【Redis】主从复制
数据库·redis