JUC并发编程

对应学习视频:B站,希望能帮助到大家。也很感谢各位大佬整理的笔记,正式因为借鉴你们,才有下面的文章。后期会一一列出借鉴的出处。

并发编程

1.概览

1.1.总体路线

1.2.预备知识

1.2.1.pom.xml依赖如下

xml 复制代码
<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
      <maven.compiler.source>1.8</maven.compiler.source>
      <maven.compiler.target>1.8</maven.compiler.target>
  </properties>
​
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
    <dependency>
      <groupId>org.projectlombok</groupId>
      <artifactId>lombok</artifactId>
      <version>1.18.22</version>
      <scope>provided</scope>
    </dependency>
    <dependency>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-api</artifactId>
      <version>1.7.22</version>
    </dependency>
    <dependency>
      <groupId>ch.qos.logback</groupId>
      <artifactId>logback-classic</artifactId>
      <version>1.2.3</version>
    </dependency>
    <dependency>
      <groupId>org.junit.jupiter</groupId>
      <artifactId>junit-jupiter</artifactId>
      <version>RELEASE</version>
      <scope>compile</scope>
    </dependency>
  </dependencies>

1.2.2.logback.xml 配置如下:

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<configuration scan="true">
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>%date{HH:mm:ss} [%t] %logger - %m%n</pattern>
        </encoder>
    </appender>
    <logger name="c" level="debug" additivity="false">
        <appender-ref ref="STDOUT"/>
    </logger>
    <root level="ERROR">
        <appender-ref ref="STDOUT"/>
    </root>
</configuration>

2.进程与线程

2.1. 进程与线程

进程

  • 程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在 指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的 。
  • 当一个程序被运行,从磁盘加载这个程序的代码至内存,这时就开启了一个进程。
  • 进程就可以视为程序的一个实例。大部分程序可以同时运行多个实例进程(例如记事本、画图、浏览器 等),也有的程序只能启动一个实例进程(例如网易云音乐、360 安全卫士等)

线程

  • 一个进程之内可以分为一到多个线程。
  • 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行
  • Java 中,线程作为最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作 为线程的容器

二者对比

  • 进程基本上相互独立的,而线程存在于进程内,是进程的一个子集
  • 进程拥有共享的资源,如内存空间等,供其内部的线程共享
  • 进程间通信较为复杂

    1. 同一台计算机的进程通信称为 IPC(Inter-process communication)
    2. 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
  • 线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量

  • 线程更轻量,线程上下文切换成本一般上要比进程上下文切换低

2.2.并行与并发

单核cpu下,线程实际还是串行执行 的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows 下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于 cpu 在线程间(时间片很短)的切换非常快,人类感觉是同时运行的 。总结为一句话就是: 微观串行,宏观并行

一般会将这种线程轮流使用 CPU 的做法称为并发, concurrent

CPU 时间片 1 时间片 2 时间片 3 时间片 4
core 线程 1 线程 2 线程 3 线程 4

多核 cpu下,每个 核(core) 都可以调度运行线程,这时候线程可以是并行的。

CPU 时间片 1 时间片 2 时间片 3 时间片 4
core1 线程 1 线程 2 线程 3 线程 4
core2 线程 4 线程 4 线程 2 线程 2

引用 Rob Pike 的一段描述:

  1. 并发(concurrent)是同一时间应对(dealing with)多件事情的能力 。
  2. 并行(parallel)是同一时间动手做(doing)多件事情的能力。

例子

  1. 家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发
  2. 雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是并行
  3. 家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一 个人用锅时,另一个人就得等待)

2.3. 同步与异步概念

以调用方角度来讲,如果

  • 需要等待结果返回,才能继续运行就是同步
  • 不需要等待结果返回,就能继续运行就是异步

案例

充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。

复制代码
计算 1 花费 10 ms
计算 2 花费 11 ms
计算 3 花费 9 ms
汇总需要 1 ms
  • 如果是串行执行,那么总共花费的时间是 10 + 11 + 9 + 1 = 31ms
  • 但如果是四核 cpu,各个核心分别使用线程 1 执行计算 1,线程 2 执行计算 2,线程 3 执行计算 3,那么 3 个 线程是并行的,花费时间只取决于最长的那个线程运行的时间,即 11ms 最后加上汇总时间只会花费 12ms

注意:

需要在多核 cpu 才能提高效率,单核仍然时是轮流执行

结论

  1. 单核 cpu 下,多线程不能实际提高程序运行效率,只是为了能够在不同的任务之间切换,不同线程轮流使用 cpu ,不至于一个线程总占用 cpu,别的线程没法干活

  2. 多核 cpu 可以并行跑多个线程,但能否提高程序运行效率还是要分情况的

    • 有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任 务都能拆分(参考后文的【阿姆达尔定律】)
    • 也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义
  3. IO 操作不占用 cpu,只是我们一般拷贝文件使用的是【阻塞 IO】,这时相当于线程虽然不用 cpu,但需要一 直等待 IO 结束,没能充分利用线程。所以才有后面的【非阻塞 IO】和【异步 IO】优化。

3.Java 线程

3.1. 创建和运行线程

方法一,直接使用 Thread

csharp 复制代码
// 创建线程对象
Thread t = new Thread() {
    public void run() {
        // 要执行的任务
    }
};
// 启动线程
t.start();

例如:

java 复制代码
// 构造方法的参数是给线程指定名字,推荐
Thread t1 = new Thread("t1") {
    @Override
    // run 方法内实现了要执行的任务
    public void run() {
        log.debug("hello");
    }
};
t1.start();

输出:

ini 复制代码
19:19:00 [t1] c.ThreadStarter - hello

方法二,使用 Runnable 配合 Thread

把【线程】和【任务】(要执行的代码)分开

  • Thread 代表线程
  • Runnable 可运行的任务(线程要执行的代码)
java 复制代码
Runnable runnable = new Runnable() {
    public void run(){
        // 要执行的任务
    }
};
// 创建线程对象
Thread t = new Thread( runnable );
// 启动线程
t.start(); 

例如:

java 复制代码
// 创建任务对象
Runnable task2 = new Runnable() {
    @Override
    public void run() {
        log.debug("hello");
    }
};
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();

输出:

ini 复制代码
9:19:00 [t2] c.ThreadStarter - hello

Java 8 以后可以使用 lambda 精简代码

ini 复制代码
// 创建任务对象
Runnable task2 = () -> log.debug("hello");
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();

Thread 与 Runnable 的关系

分析 Thread 的源码,理清它与 Runnable 的关系

csharp 复制代码
//Runnable源码
public interface Runnable {
    public abstract void run();
}
typescript 复制代码
//Thread源码(部分)
public class Thread implements Runnable {
    /* What will be run. */
    private Runnable target;
    
    public Thread(Runnable target) {
        init(null, target, "Thread-" + nextThreadNum(), 0);
    }
    
    private void init(ThreadGroup g, Runnable target, String name,
                      long stackSize, AccessControlContext acc,
                      boolean inheritThreadLocals) {
        //...
        this.target = target;
       //...
    }
    @Override
    public void run() {
        if (target != null) {
            target.run();
        }
    }

小结

  • 方法1 是把线程和任务合并在了一起,方法2 是把线程和任务分开了
  • 用 Runnable 更容易与线程池等高级API 配合
  • 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活

方法三,FutureTask 配合 Thread

FutureTask 能够接收 Callable 类型的参数,用来处理有返回结果的情况

ini 复制代码
// 创建任务对象
FutureTask<Integer> task3 = new FutureTask<>(() -> {
 log.debug("hello");
 return 100;
});
// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(task3, "t3").start();
// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);

输出

ini 复制代码
19:22:27 [t3] c.ThreadStarter - hello
19:22:27 [main] c.ThreadStarter - 结果是:100

源码分析

ini 复制代码
//FutureTask源码(部分)
public class FutureTask<V> implements RunnableFuture<V> {
    /** The underlying callable; nulled out after running */
    private Callable<V> callable;
    
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }
    
    public void run() {
       //...
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        }
        //...
    }
    
    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }
    
    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }
    
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }
}    
java 复制代码
//Callable源码
@FunctionalInterface
public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

说明

  • FutureTask内置了一个Callable对象,初始化方法将指定的Callable赋给这个对象。
  • FutureTask实现了Runnable接口,并重写了Run方法,在Run方法中调用了Callable中的call方法,并将返回值赋值给outcome变量
  • get方法就是取出outcome的值。

Future提供了三种功能:

  1. 判断任务是否完成;
  2. 能够中断任务;
  3. 能够获取任务执行结果
java 复制代码
public interface Future<V> {
  // 取消任务
  boolean cancel(boolean mayInterruptIfRunning);
  // 获取任务执行结果
  V get() throws InterruptedException, ExecutionException;
  // 获取任务执行结果,带有超时时间限制
  V get(long timeout, TimeUnit unit) throws InterruptedException,                             ExecutionException,  TimeoutException;
  // 判断任务是否已经取消
  boolean isCancelled();
  // 判断任务是否已经结束
  boolean isDone();
}

3.2. 观察多个线程同时运行

主要是理解

  • 交替执行
  • 谁先谁后,不由我们控制

示例代码

typescript 复制代码
@Slf4j(topic = "c.TestMultiThread")
public class TestMultiThread {
​
    public static void main(String[] args) {
        new Thread(() -> {
            while(true) {
                log.debug("running");
            }
        },"t1").start();
        new Thread(() -> {
            while(true) {
                log.debug("running");
            }
        },"t2").start();
    }
}

运行结果:

ini 复制代码
23:45:26.254 c.TestMultiThread [t2] - running
23:45:26.254 c.TestMultiThread [t2] - running
23:45:26.254 c.TestMultiThread [t2] - running
23:45:26.254 c.TestMultiThread [t2] - running
23:45:26.254 c.TestMultiThread [t1] - running
23:45:26.254 c.TestMultiThread [t1] - running
23:45:26.254 c.TestMultiThread [t1] - running
23:45:26.254 c.TestMultiThread [t1] - running
23:45:26.254 c.TestMultiThread [t1] - running
23:45:26.254 c.TestMultiThread [t1] - running

3.3. 查看进程线程的方法

windows

  • 任务管理器可以查看进程和线程数,也可以用来杀死进程

  • tasklist 查看进程

    • tasklist | findstr (查找关键字)
  • taskkill 杀死进程

    • taskkill /F(彻底杀死)/PID(进程PID)

Linux

  • ps -fe 查看所有进程
  • ps -fe | grep java 查看Java进程
  • ps -fT -p 查看某个进程(PID)的所有线程
  • kill 杀死进程 kill 4262
  • top -H -p 查看某个进程(PID)的所有线程

Java

  • jps 命令查看所有 Java 进程
  • jstack 4262 jstack 查看某个 Java 进程(PID)那一刻的所有线程状态信息
  • jconsole 来查看某个 Java 进程中线程的运行情况(图形界面)

jconsole 远程监控配置

  • 需要以如下方式运行你的 java 类

    ini 复制代码
    java -Djava.rmi.server.hostname=`ip地址` -Dcom.sun.management.jmxremote 
    -Dcom.sun.management.jmxremote.port=`连接端口` -Dcom.sun.management.jmxremote.ssl=是否安全连接(true/false) 
    -Dcom.sun.management.jmxremote.authenticate=是否认证(true/false) java类
  • 关闭防火墙,允许端口

  • 修改 /etc/hosts 文件将 127.0.0.1 映射至主机名

如果要认证访问,还需要做如下步骤

  • 复制 jmxremote.password 文件
  • 修改 jmxremote.password 和 jmxremote.access 文件的权限为 600 即文件所有者可读写
  • 连接时填入 controlRole(用户名),R&D(密码)

3.4. 原理之线程运行

栈与栈帧

Java Virtual Machine Stacks (Java 虚拟机栈)

我们都知道 JVM 中由堆、栈(先进后出)、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟 机就会为其分配一块栈内存。

  • 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
  • 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法

method2执行完,栈内存就释放

图形化界面解释线程运行原理

线程上下文切换(Thread Context Switch)

因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码

  • 线程的 cpu 时间片用完
  • 垃圾回收
  • 有更高优先级的线程需要运行
  • 线程自己调用了 sleep、yield、wait、join、park、synchronized、lock 等方法

当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念 就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的

  • 状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
  • Context Switch 频繁发生会影响性能(线程数不是越多越好,频繁的切换影响性能)

3.5.常见方法

方法 功能说明 注意
public void start() 启动一个新线程;Java虚拟机调用此线程的run方法 start 方法只是让线程进入就绪,里面代码不一定立刻 运行(CPU 的时间片还没分给它)。每个线程对象的 start方法只能调用一次,如果调用了多次会出现 IllegalThreadStateException
public void run() 线程启动后调用该方法 如果在构造 Thread 对象时传递了 Runnable 参数,则 线程启动后会调用 Runnable 中的 run 方法,否则默 认不执行任何操作。但可以创建 Thread 的子类对象, 来覆盖默认行为
public void setName(String name) 给当前线程取名字
public void getName() 获取当前线程的名字。线程存在默认名称:子线程是Thread-索引,主线程是main
public static Thread currentThread() 获取当前线程对象,代码在哪个线程中执行
public static void sleep(long time) 让当前线程休眠多少毫秒再继续执行。Thread.sleep(0) : 让操作系统立刻重新进行一次cpu竞争
public static native void yield() 提示线程调度器让出当前线程对CPU的使用 主要是为了测试和调试
public final int getPriority() 返回此线程的优先级
public final void setPriority(int priority) 更改此线程的优先级,常用1 5 10 java中规定线程优先级是1~10 的整数,较大的优先级 能提高该线程被 CPU 调度的机率
public void interrupt() 中断这个线程,异常处理机制
public static boolean interrupted() 判断当前线程是否被打断,清除打断标记 会清除打断标记
public boolean isInterrupted() 判断当前线程是否被打断,不清除打断标记
public final void join() 等待这个线程结束
public final void join(long millis) 等待这个线程结束,最多等待 millis毫秒,0意味着永远等待
public final native boolean isAlive() 线程是否存活(还没有运行完毕)
public final void setDaemon(boolean on) 将此线程标记为守护线程或用户线程
public long getId() 获取线程长整型 的 id id 唯一
public state getState() 获取线程状态 Java 中线程状态是用 6 个 enum 表示,分别为: NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED
public boolean isInterrupted() 判断是否被打 断 不会清除 打断标记

3.6. start 与 run

调用 run

typescript 复制代码
public static void main(String[] args) {
    Thread t1 = new Thread("t1") {
        @Override
        public void run() {
            log.debug(Thread.currentThread().getName());
            FileReader.read(Constants.MP4_FULL_PATH);
        }
    };
    t1.run();
    log.debug("do other things ...");
}

输出

ini 复制代码
19:39:14 [main] c.TestStart - main
19:39:14 [main] c.FileReader - read [1.mp4] start ...
19:39:18 [main] c.FileReader - read [1.mp4] end ... cost: 4227 ms
19:39:18 [main] c.TestStart - do other things ...

程序仍在 main 线程运行, FileReader.read() 方法调用还是同步的

调用start

将上述代码的 t1.run() 改为

ini 复制代码
t1.start();

输出

ini 复制代码
19:41:30 [main] c.TestStart - do other things ...
19:41:30 [t1] c.TestStart - t1
19:41:30 [t1] c.FileReader - read [1.mp4] start ...
19:41:35 [t1] c.FileReader - read [1.mp4] end ... cost: 4542 ms

程序在 t1 线程运行, FileReader.read() 方法调用是异步的

小结

  • 直接调用 run 是在主线程中执行了 run,没有启动新的线程

  • 使用 start 是启动新的线程,通过新的线程间接执行 run 中的代码

    typescript 复制代码
    public static void main(String[] args) {
        Thread t1 = new Thread("t1") {
            @Override
            public void run() {
                log.debug("running...");
            }
        };
        System.out.println(t1.getState());
        t1.start();
        System.out.println(t1.getState());
    }

    可以看见,start方法创建了一个新线程,将线程从就绪状态切换为Runnable

    arduino 复制代码
    NEW
    RUNNABLE
    03:45:12.255 c.Test5 [t1] - running...
相关推荐
悟空码字7 分钟前
支付宝开放平台,这谁写的,要扣绩效吧
后端
魔镜魔镜_谁是世界上最漂亮的小仙女7 分钟前
java-JDBC
java·后端
武子康7 分钟前
大数据-13-Hive 启动Hive DDL DML 增删改查 操作Hive的HQL
大数据·后端
gorgor在码农10 分钟前
Spring Boot多数据源切换:三种实现方式详解与实战
java·spring boot·后端·mybatis·mybatis plus·多数据源切换
机灵小和尚14 分钟前
腾讯云 Teo H5直传CDN空间
后端·云计算·php·腾讯云·html5
追逐时光者22 分钟前
C#/.NET/.NET Core技术前沿周刊 | 第 42 期(2025年6.9-6.15)
后端·.net
南囝coding1 小时前
《独立开发工具 • 半月刊》 第 012 期
前端·后端
程序猿DD1 小时前
告别微服务,迎接SCS(Self-Contained Systems)?新概念还是炒冷饭?
后端·微服务·架构
cyc&阿灿2 小时前
深度解析SpringBoot自动化部署实战:从原理到最佳实践
spring boot·后端·自动化
JohnYan2 小时前
Bun技术评估 - 10 Testing
javascript·后端·bun