以下是使用Python和OpenCV库实现图像数据增强的简单示例代码,其中包括常用的数据增强操作:
python
import cv2
import numpy as np
import os
# 水平翻转
def horizontal_flip(image):
return cv2.flip(image, 1)
# 垂直翻转
def vertical_flip(image):
return cv2.flip(image, 0)
# 随机旋转
def random_rotation(image, angle_range=(-10, 10)):
angle = np.random.randint(angle_range[0], angle_range[1])
height, width = image.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1)
rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height))
return rotated_image
# 随机裁剪
def random_crop(image, crop_size=(224, 224)):
height, width = image.shape[:2]
left = np.random.randint(0, width - crop_size[0])
top = np.random.randint(0, height - crop_size[1])
right = left + crop_size[0]
bottom = top + crop_size[1]
cropped_image = image[top:bottom, left:right]
return cropped_image
# 添加随机噪声
def random_noise(image, noise_range=(20, 50)):
noise = np.random.randint(noise_range[0], noise_range[1], size=image.shape, dtype=np.uint8)
noisy_image = cv2.add(image, noise)
return np.clip(noisy_image, 0, 255)
# 设置原始图像路径和增强后图像保存路径
original_path = "original_images"
augmented_path = "augmented_images"
# 确保存储路径存在
os.makedirs(augmented_path, exist_ok=True)
# 遍历原始图像路径下的所有图像
for filename in os.listdir(original_path):
if filename.endswith(".jpg") or filename.endswith(".png"):
image_path = os.path.join(original_path, filename)
image = cv2.imread(image_path)
# 水平翻转
h_flip = horizontal_flip(image)
cv2.imwrite(os.path.join(augmented_path, f"flip_h_{filename}"), h_flip)
# 垂直翻转
v_flip = vertical_flip(image)
cv2.imwrite(os.path.join(augmented_path, f"flip_v_{filename}"), v_flip)
# 随机旋转
rotated = random_rotation(image)
cv2.imwrite(os.path.join(augmented_path, f"rotated_{filename}"), rotated)
# 随机裁剪
cropped = random_crop(image)
cv2.imwrite(os.path.join(augmented_path, f"crop_{filename}"), cropped)
# 添加随机噪声
noisy = random_noise(image)
cv2.imwrite(os.path.join(augmented_path, f"noisy_{filename}"), noisy)
在这个示例代码中,我们使用OpenCV库来加载和处理图像。我们定义了几个常用的数据增强操作函数,包括水平翻转、垂直翻转、随机旋转、随机裁剪和添加随机噪声。然后,我们遍历原始图像路径下的所有图像,对每张图像进行数据增强操作,并保存到增强后图像保存路径。
请注意,为了运行此代码,您需要安装OpenCV库。可以使用pip install opencv-python
命令来安装。同时,确保将原始图像放在指定的原始图像路径下,并设置好增强后图像的保存路径。
python
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import os.path
import copy
# 椒盐噪声
def SaltAndPepper(src, percetage):
SP_NoiseImg = src.copy()
SP_NoiseNum = int(percetage*src.shape[0]*src.shape[1])
for i in range(SP_NoiseNum):
randR = np.random.randint(0, src.shape[0]-1)
randG = np.random.randint(0, src.shape[1]-1)
randB = np.random.randint(0, 3)
if np.random.randint(0, 1) == 0:
SP_NoiseImg[randR, randG, randB] = 0
else:
SP_NoiseImg[randR, randG, randB] = 255
return SP_NoiseImg
# 高斯噪声
def addGaussianNoise(image, percetage):
G_Noiseimg = image.copy()
w = image.shape[1]
h = image.shape[0]
G_NoiseNum = int(percetage*image.shape[0]*image.shape[1])
for i in range(G_NoiseNum):
temp_x = np.random.randint(0, h)
temp_y = np.random.randint(0, w)
G_Noiseimg[temp_x][temp_y][np.random.randint(3)] = np.random.randn(1)[
0]
return G_Noiseimg
# 昏暗
def darker(image, percetage=0.9):
image_copy = image.copy()
w = image.shape[1]
h = image.shape[0]
# get darker
for xi in range(0, w):
for xj in range(0, h):
image_copy[xj, xi, 0] = int(image[xj, xi, 0]*percetage)
image_copy[xj, xi, 1] = int(image[xj, xi, 1]*percetage)
image_copy[xj, xi, 2] = int(image[xj, xi, 2]*percetage)
return image_copy
# 亮度
def brighter(image, percetage=1.5):
image_copy = image.copy()
w = image.shape[1]
h = image.shape[0]
# get brighter
for xi in range(0, w):
for xj in range(0, h):
image_copy[xj, xi, 0] = np.clip(
int(image[xj, xi, 0]*percetage), a_max=255, a_min=0)
image_copy[xj, xi, 1] = np.clip(
int(image[xj, xi, 1]*percetage), a_max=255, a_min=0)
image_copy[xj, xi, 2] = np.clip(
int(image[xj, xi, 2]*percetage), a_max=255, a_min=0)
return image_copy
# 旋转
def rotate(image, angle, center=None, scale=1.0):
(h, w) = image.shape[:2]
# If no rotation center is specified, the center of the image is set as the rotation center
if center is None:
center = (w / 2, h / 2)
m = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(image, m, (w, h))
return rotated
# 翻转
def flip(image):
flipped_image = np.fliplr(image)
return flipped_image
# 图片文件夹路径
file_dir = r'test/img/'
for img_name in os.listdir(file_dir):
img_path = file_dir + img_name
img = cv2.imread(img_path)
# cv2.imshow("1",img)
# cv2.waitKey(5000)
# 旋转
rotated_90 = rotate(img, 90)
cv2.imwrite(file_dir + img_name[0:-4] + '_r90.jpg', rotated_90)
rotated_180 = rotate(img, 180)
cv2.imwrite(file_dir + img_name[0:-4] + '_r180.jpg', rotated_180)
for img_name in os.listdir(file_dir):
img_path = file_dir + img_name
img = cv2.imread(img_path)
# 镜像
flipped_img = flip(img)
cv2.imwrite(file_dir + img_name[0:-4] + '_fli.jpg', flipped_img)
# 增加噪声
# img_salt = SaltAndPepper(img, 0.3)
# cv2.imwrite(file_dir + img_name[0:7] + '_salt.jpg', img_salt)
img_gauss = addGaussianNoise(img, 0.3)
cv2.imwrite(file_dir + img_name[0:-4] + '_noise.jpg', img_gauss)
# 变亮、变暗
img_darker = darker(img)
cv2.imwrite(file_dir + img_name[0:-4] + '_darker.jpg', img_darker)
img_brighter = brighter(img)
cv2.imwrite(file_dir + img_name[0:-4] + '_brighter.jpg', img_brighter)
blur = cv2.GaussianBlur(img, (7, 7), 1.5)
# cv2.GaussianBlur(图像,卷积核,标准差)
cv2.imwrite(file_dir + img_name[0:-4] + '_blur.jpg', blur)