Spark Dataset 快速上手

文章首发地址

Spark Dataset是Spark提供的一种强类型的数据抽象,它结合了RDD的强大功能和DataFrame的优化执行。下面是Spark Dataset的Java API的详细解释:

  1. 创建Dataset:

    使用spark.createDataset()方法:通过调用spark对象的createDataset()方法,可以将Java集合或数组转换为Dataset。示例代码如下:

    java 复制代码
    List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

    Dataset dataset = spark.createDataset(data, Encoders.INT());

    使用spark.read().dataset()方法:在读取外部数据源时,可以使用spark.read().dataset()方法创建Dataset。示例代码如下:

    java 复制代码
    Dataset<Row> dataset = spark.read().dataset("path/to/data.csv");
  2. 转换和操作Dataset:

    filter()方法:使用filter()方法可以根据指定的条件过滤数据集。示例代码如下:

    java 复制代码
    Dataset<Integer> filteredDataset = dataset.filter(value -> value > 3);

    map()方法:使用map()方法可以对数据集中的每个元素进行映射操作,并返回一个新的Dataset。示例代码如下:

    java 复制代码
    Dataset<String> mappedDataset = dataset.map(value -> String.valueOf(value));

    groupBy()和agg()方法:使用groupBy()方法对数据集进行分组,然后使用agg()方法进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> groupedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));
  3. 操作Dataset的列:

    select()方法:使用select()方法可以选择要包含在结果中的列。示例代码如下:

    java 复制代码
    Dataset<Row> selectedDataset = dataset.select("col1", "col2");

    withColumn()方法:使用withColumn()方法可以添加新的列或替换现有列。示例代码如下:

    java 复制代码
    Dataset<Row> modifiedDataset = dataset.withColumn("newColumn", col("oldColumn").plus(1));
  4. 聚合操作和窗口函数:

    groupBy()和聚合函数:可以使用groupBy()方法对数据集进行分组,然后使用聚合函数(如sum()、avg()等)进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> aggregatedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));

    窗口函数:使用窗口函数可以在数据集上定义窗口,并在窗口内进行聚合操作。示例代码如下:

    java 复制代码
    WindowSpec windowSpec = Window.partitionBy("category").orderBy("amount");
    Dataset<Row> windowedDataset = dataset.withColumn("rank", rank().over(windowSpec));

    这些是Spark Dataset Java API中的一些常用方法和操作。通过这些API,您可以创建、转换和操作强类型的Dataset,并进行各种聚合和分析操作,以满足您的数据处理需求。

相关推荐
微风中的麦穗14 分钟前
【SQL Server 2019】企业级数据库系统—数据库SQL Server 2019保姆级详细图文下载安装完全指南
大数据·数据库·sqlserver·云计算·个人开发·运维必备·sqlserver2019
qyresearch_1 小时前
圆形连接器外壳:全球市场格局、技术趋势与行业展望
大数据
海兰2 小时前
ES 9.3.0 模型上下文优化
大数据·elasticsearch·搜索引擎
躺柒2 小时前
读人工智能全球格局:未来趋势与中国位势06人类的未来(下)
大数据·人工智能·算法·ai·智能
码云数智-大飞3 小时前
小程序制作平台有哪些?SaaS小程序制作平台对比评测
大数据·人工智能
ctrigger3 小时前
家和万事兴
大数据·人工智能·生活
追风少年ii4 小时前
文献分享--口腔黏膜免疫受独特的空间结构调控
大数据·数据挖掘·数据分析·空间·单细胞
龙山云仓5 小时前
No156:AI中国故事-对话司马迁——史家绝唱与AI记忆:时间叙事与因果之链
大数据·开发语言·人工智能·python·机器学习
heimeiyingwang9 小时前
从 0 到 1:企业 AI 战略规划与落地路线图
大数据·人工智能
海兰9 小时前
Elasticsearch 9.3.0 日志数据源配置
大数据·elasticsearch·jenkins