Spark Dataset 快速上手

文章首发地址

Spark Dataset是Spark提供的一种强类型的数据抽象,它结合了RDD的强大功能和DataFrame的优化执行。下面是Spark Dataset的Java API的详细解释:

  1. 创建Dataset:

    使用spark.createDataset()方法:通过调用spark对象的createDataset()方法,可以将Java集合或数组转换为Dataset。示例代码如下:

    java 复制代码
    List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

    Dataset dataset = spark.createDataset(data, Encoders.INT());

    使用spark.read().dataset()方法:在读取外部数据源时,可以使用spark.read().dataset()方法创建Dataset。示例代码如下:

    java 复制代码
    Dataset<Row> dataset = spark.read().dataset("path/to/data.csv");
  2. 转换和操作Dataset:

    filter()方法:使用filter()方法可以根据指定的条件过滤数据集。示例代码如下:

    java 复制代码
    Dataset<Integer> filteredDataset = dataset.filter(value -> value > 3);

    map()方法:使用map()方法可以对数据集中的每个元素进行映射操作,并返回一个新的Dataset。示例代码如下:

    java 复制代码
    Dataset<String> mappedDataset = dataset.map(value -> String.valueOf(value));

    groupBy()和agg()方法:使用groupBy()方法对数据集进行分组,然后使用agg()方法进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> groupedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));
  3. 操作Dataset的列:

    select()方法:使用select()方法可以选择要包含在结果中的列。示例代码如下:

    java 复制代码
    Dataset<Row> selectedDataset = dataset.select("col1", "col2");

    withColumn()方法:使用withColumn()方法可以添加新的列或替换现有列。示例代码如下:

    java 复制代码
    Dataset<Row> modifiedDataset = dataset.withColumn("newColumn", col("oldColumn").plus(1));
  4. 聚合操作和窗口函数:

    groupBy()和聚合函数:可以使用groupBy()方法对数据集进行分组,然后使用聚合函数(如sum()、avg()等)进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> aggregatedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));

    窗口函数:使用窗口函数可以在数据集上定义窗口,并在窗口内进行聚合操作。示例代码如下:

    java 复制代码
    WindowSpec windowSpec = Window.partitionBy("category").orderBy("amount");
    Dataset<Row> windowedDataset = dataset.withColumn("rank", rank().over(windowSpec));

    这些是Spark Dataset Java API中的一些常用方法和操作。通过这些API,您可以创建、转换和操作强类型的Dataset,并进行各种聚合和分析操作,以满足您的数据处理需求。

相关推荐
gzzeason1 小时前
Ajax:现代JS发起http通信的代名词
前端·javascript·ajax
万米商云1 小时前
企业物资集采平台解决方案:跨地域、多仓库、百部门——大型企业如何用一套系统管好百万级物资?
大数据·运维·人工智能
BigData共享1 小时前
极致性能背后的黑科技?这个世上没有“银弹”!(三)
大数据
阿里云大数据AI技术1 小时前
Flink Forward Asia 2025 主旨演讲精彩回顾
大数据·人工智能·flink
y_y_liang2 小时前
图生生AI商品换背景,高效商拍!
大数据·人工智能·ai·ai作画
王小王-1232 小时前
基于Hadoop的用户购物行为可视化分析系统设计与实现
大数据·hadoop·分布式·用户购物行为·电商日志分析
沐尘而生2 小时前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐
贝格前端工场2 小时前
小程序订阅消息设计:用户触达与隐私保护的平衡法则
大数据·小程序
成都极云科技3 小时前
成都算力租赁新趋势:H20 八卡服务器如何重塑 AI 产业格局?
大数据·服务器·人工智能·云计算·gpu算力
典学长编程4 小时前
高效学习之一篇搞定分布式管理系统Git !
大数据·git·搜索引擎