Spark Dataset 快速上手

文章首发地址

Spark Dataset是Spark提供的一种强类型的数据抽象,它结合了RDD的强大功能和DataFrame的优化执行。下面是Spark Dataset的Java API的详细解释:

  1. 创建Dataset:

    使用spark.createDataset()方法:通过调用spark对象的createDataset()方法,可以将Java集合或数组转换为Dataset。示例代码如下:

    java 复制代码
    List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

    Dataset dataset = spark.createDataset(data, Encoders.INT());

    使用spark.read().dataset()方法:在读取外部数据源时,可以使用spark.read().dataset()方法创建Dataset。示例代码如下:

    java 复制代码
    Dataset<Row> dataset = spark.read().dataset("path/to/data.csv");
  2. 转换和操作Dataset:

    filter()方法:使用filter()方法可以根据指定的条件过滤数据集。示例代码如下:

    java 复制代码
    Dataset<Integer> filteredDataset = dataset.filter(value -> value > 3);

    map()方法:使用map()方法可以对数据集中的每个元素进行映射操作,并返回一个新的Dataset。示例代码如下:

    java 复制代码
    Dataset<String> mappedDataset = dataset.map(value -> String.valueOf(value));

    groupBy()和agg()方法:使用groupBy()方法对数据集进行分组,然后使用agg()方法进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> groupedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));
  3. 操作Dataset的列:

    select()方法:使用select()方法可以选择要包含在结果中的列。示例代码如下:

    java 复制代码
    Dataset<Row> selectedDataset = dataset.select("col1", "col2");

    withColumn()方法:使用withColumn()方法可以添加新的列或替换现有列。示例代码如下:

    java 复制代码
    Dataset<Row> modifiedDataset = dataset.withColumn("newColumn", col("oldColumn").plus(1));
  4. 聚合操作和窗口函数:

    groupBy()和聚合函数:可以使用groupBy()方法对数据集进行分组,然后使用聚合函数(如sum()、avg()等)进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> aggregatedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));

    窗口函数:使用窗口函数可以在数据集上定义窗口,并在窗口内进行聚合操作。示例代码如下:

    java 复制代码
    WindowSpec windowSpec = Window.partitionBy("category").orderBy("amount");
    Dataset<Row> windowedDataset = dataset.withColumn("rank", rank().over(windowSpec));

    这些是Spark Dataset Java API中的一些常用方法和操作。通过这些API,您可以创建、转换和操作强类型的Dataset,并进行各种聚合和分析操作,以满足您的数据处理需求。

相关推荐
weixin_3077791318 分钟前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
上海锝秉工控3 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY3 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj4 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商5 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
Aurora_NeAr5 小时前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-1235 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
数据与人工智能律师6 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
Edingbrugh.南空7 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星0077 小时前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车