Spark Dataset 快速上手

文章首发地址

Spark Dataset是Spark提供的一种强类型的数据抽象,它结合了RDD的强大功能和DataFrame的优化执行。下面是Spark Dataset的Java API的详细解释:

  1. 创建Dataset:

    使用spark.createDataset()方法:通过调用spark对象的createDataset()方法,可以将Java集合或数组转换为Dataset。示例代码如下:

    java 复制代码
    List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

    Dataset dataset = spark.createDataset(data, Encoders.INT());

    使用spark.read().dataset()方法:在读取外部数据源时,可以使用spark.read().dataset()方法创建Dataset。示例代码如下:

    java 复制代码
    Dataset<Row> dataset = spark.read().dataset("path/to/data.csv");
  2. 转换和操作Dataset:

    filter()方法:使用filter()方法可以根据指定的条件过滤数据集。示例代码如下:

    java 复制代码
    Dataset<Integer> filteredDataset = dataset.filter(value -> value > 3);

    map()方法:使用map()方法可以对数据集中的每个元素进行映射操作,并返回一个新的Dataset。示例代码如下:

    java 复制代码
    Dataset<String> mappedDataset = dataset.map(value -> String.valueOf(value));

    groupBy()和agg()方法:使用groupBy()方法对数据集进行分组,然后使用agg()方法进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> groupedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));
  3. 操作Dataset的列:

    select()方法:使用select()方法可以选择要包含在结果中的列。示例代码如下:

    java 复制代码
    Dataset<Row> selectedDataset = dataset.select("col1", "col2");

    withColumn()方法:使用withColumn()方法可以添加新的列或替换现有列。示例代码如下:

    java 复制代码
    Dataset<Row> modifiedDataset = dataset.withColumn("newColumn", col("oldColumn").plus(1));
  4. 聚合操作和窗口函数:

    groupBy()和聚合函数:可以使用groupBy()方法对数据集进行分组,然后使用聚合函数(如sum()、avg()等)进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> aggregatedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));

    窗口函数:使用窗口函数可以在数据集上定义窗口,并在窗口内进行聚合操作。示例代码如下:

    java 复制代码
    WindowSpec windowSpec = Window.partitionBy("category").orderBy("amount");
    Dataset<Row> windowedDataset = dataset.withColumn("rank", rank().over(windowSpec));

    这些是Spark Dataset Java API中的一些常用方法和操作。通过这些API,您可以创建、转换和操作强类型的Dataset,并进行各种聚合和分析操作,以满足您的数据处理需求。

相关推荐
云云3212 小时前
怎么通过亚矩阵云手机实现营销?
大数据·服务器·安全·智能手机·矩阵
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
Data-Miner2 小时前
经典案例PPT | 大型水果连锁集团新零售数字化建设方案
大数据·big data
lovelin+v175030409663 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
道一云黑板报3 小时前
Flink集群批作业实践:七析BI批作业执行
大数据·分布式·数据分析·flink·kubernetes
节点。csn3 小时前
flink集群搭建 详细教程
大数据·服务器·flink
数据爬坡ing4 小时前
小白考研历程:跌跌撞撞,起起伏伏,五个月备战历程!!!
大数据·笔记·考研·数据分析
云云3214 小时前
云手机方案全解析
大数据·服务器·安全·智能手机·矩阵
郭尘帅6665 小时前
Ajax学习笔记
笔记·学习·ajax
QTX187305 小时前
ajax中get和post的区别,datatype返回的数据类型有哪些?web开发中数据提交的几种方式,有什么区别。
前端·javascript·ajax