Spark Dataset 快速上手

文章首发地址

Spark Dataset是Spark提供的一种强类型的数据抽象,它结合了RDD的强大功能和DataFrame的优化执行。下面是Spark Dataset的Java API的详细解释:

  1. 创建Dataset:

    使用spark.createDataset()方法:通过调用spark对象的createDataset()方法,可以将Java集合或数组转换为Dataset。示例代码如下:

    java 复制代码
    List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

    Dataset dataset = spark.createDataset(data, Encoders.INT());

    使用spark.read().dataset()方法:在读取外部数据源时,可以使用spark.read().dataset()方法创建Dataset。示例代码如下:

    java 复制代码
    Dataset<Row> dataset = spark.read().dataset("path/to/data.csv");
  2. 转换和操作Dataset:

    filter()方法:使用filter()方法可以根据指定的条件过滤数据集。示例代码如下:

    java 复制代码
    Dataset<Integer> filteredDataset = dataset.filter(value -> value > 3);

    map()方法:使用map()方法可以对数据集中的每个元素进行映射操作,并返回一个新的Dataset。示例代码如下:

    java 复制代码
    Dataset<String> mappedDataset = dataset.map(value -> String.valueOf(value));

    groupBy()和agg()方法:使用groupBy()方法对数据集进行分组,然后使用agg()方法进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> groupedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));
  3. 操作Dataset的列:

    select()方法:使用select()方法可以选择要包含在结果中的列。示例代码如下:

    java 复制代码
    Dataset<Row> selectedDataset = dataset.select("col1", "col2");

    withColumn()方法:使用withColumn()方法可以添加新的列或替换现有列。示例代码如下:

    java 复制代码
    Dataset<Row> modifiedDataset = dataset.withColumn("newColumn", col("oldColumn").plus(1));
  4. 聚合操作和窗口函数:

    groupBy()和聚合函数:可以使用groupBy()方法对数据集进行分组,然后使用聚合函数(如sum()、avg()等)进行聚合操作。示例代码如下:

    java 复制代码
    Dataset<Row> aggregatedDataset = dataset.groupBy("category").agg(sum("amount"), avg("price"));

    窗口函数:使用窗口函数可以在数据集上定义窗口,并在窗口内进行聚合操作。示例代码如下:

    java 复制代码
    WindowSpec windowSpec = Window.partitionBy("category").orderBy("amount");
    Dataset<Row> windowedDataset = dataset.withColumn("rank", rank().over(windowSpec));

    这些是Spark Dataset Java API中的一些常用方法和操作。通过这些API,您可以创建、转换和操作强类型的Dataset,并进行各种聚合和分析操作,以满足您的数据处理需求。

相关推荐
未来之窗软件服务16 小时前
一体化系统(九)智慧社区综合报表——东方仙盟练气期
大数据·前端·仙盟创梦ide·东方仙盟·东方仙盟一体化
火星资讯20 小时前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能
星海拾遗20 小时前
git rebase记录
大数据·git·elasticsearch
Elastic 中国社区官方博客20 小时前
Elasticsearch:在分析过程中对数字进行标准化
大数据·数据库·elasticsearch·搜索引擎·全文检索
香精煎鱼香翅捞饭1 天前
记一次多线程调用TDEngine restful获取数据的时间异常
大数据·时序数据库·tdengine
AI_56781 天前
Webpack5优化的“双引擎”
大数据·人工智能·性能优化
慎独4131 天前
家家有平台:Web3.0绿色积分引领消费新纪元
大数据·人工智能·物联网
百***24371 天前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
专业开发者1 天前
奇迹由此而生:回望 Wi-Fi® 带来的诸多意外影响
大数据
尔嵘1 天前
git操作
大数据·git·elasticsearch