【Bug解决】YOLOv5 5.0 加载 6.0+版本的模型推理的兼容性问题

问题描述

使用YOLOv5 5.0版本加载6.0版本以上的模型时,会产生报错,本质原因是6.0及以上版本的网络结构发生了变化,如取消Focus结构,新增SPPF结构等。

下面进行解决。

问题一

AttributeError: Can't get attribute 'SPPF' on <module 'models.common'

这个报错只需要在5.0版本的工程中models/common文件中添加:

python 复制代码
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

问题二

RuntimeError: The size of tensor a (40) must match the size of tensor b (84) at non-singleton dimension 3

这个报错需要在models/yolo将Detect类进行替换。

python 复制代码
class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

可以注意到,替换之后的Detect类在原报错位置增加了一个判断分支,这使得该类能够同时兼容5.0和6.0的推理模型。

相关推荐
沙尘暴炒饭1 小时前
关于uni-forms组件的bug【提交的字段[‘*‘]在数据库中并不存在】
bug
今天炼丹了吗16 小时前
YOLOv11融合[ECCV2024]FADformer中的FFCM模块
yolo
Kisorge20 小时前
【C语言】代码BUG排查方式
c语言·开发语言·bug
红色的山茶花1 天前
YOLOv9-0.1部分代码阅读笔记-loss_tal.py
笔记·深度学习·yolo
安卓机器1 天前
探索 Python编程 调试案例:配置日志记录器查看程序运行bug
bug
机器懒得学习1 天前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
AI莫大猫2 天前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
KeepThinking!2 天前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态
前网易架构师-高司机2 天前
游泳溺水识别数据集,对9984张原始图片进行YOLO,COCO JSON, VOC XML 格式的标注,平均识别率在91.7%以上
yolo·溺水·游泳溺水·游泳安全
发呆小天才O.oᯅ2 天前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn