R语言绘制染色体变异位置分布图,RIdeogram包

变异位点染色体分布图

今天分享的内容是通过RIdeogram包绘制染色体位点分布图,并介绍一种展示差异位点的方法。

在遗传学研究中,通过测序等方式获得了基因组上某些位置的基因型信息。 如下表,第一列是变异位点的ID,第二列是染色体,第三列是物理位置,最后两列是两个样品的基因型。

这个文件通常有好几万行,要想快速从中获得有效信息,可以借助变异位点染色体分布图功能实现。比如下图,红色部分表示样品A和样品B差异的位置,一眼就能看出哪些位置比较关键。

数据准备

主要的输入文件有两个,第一个是染色体结构信息(长度、着丝粒位置等),第二个是待分析标注的位点信息(不同材料在某位置的基因型),如下所示:


操作方法

首先,安装并加载R包:

复制代码
library(RIdeogram)
library(tidyverse)
library(xlsx)

设置参数

将整理好的文件保存为csv格式,输入文件名。centwidth是着丝粒显示宽度,singewidth是单个位点的显示宽度,这两个值可以自定义设置。(如果设置的值越大,那么线条就越粗)

复制代码
my_filename <- "data.csv"
my_centwidth <- 5000000
my_color <- c("#e0e0e0", "#304ffe", "#dd2c00","#00bfa5")
my_singewidth <- 5000000

添加染色体信息

由于绘图时需要每个染色体的长度(起始和终止位置)和着丝粒的位置,因此提前准备一个txt文档,按如下格式整理数据,用于后续绘图。

下面是读取染色体信息的代码:

复制代码
df_chr_pos_cent <- read.table("./Ref_chromedata.txt",header = T)
df_chr_pos_cent <- cbind(df_chr_pos_cent$chr,"0",
                         df_chr_pos_cent$length,
                         df_chr_pos_cent$centromere,
                         as.numeric(df_chr_pos_cent$centromere) + my_centwidth)
df_chr_pos_cent <- as.data.frame(df_chr_pos_cent)
df_chr_pos_cent <- df_chr_pos_cent[1:21,] %>% 
      mutate_at(vars(V2,V3,V4,V5),as.integer)
colnames(df_chr_pos_cent) <- c("Chr","Start","End","CE_start","CE_end")
> head(df_chr_pos_cent)
  Chr Start       End  CE_start    CE_end
1  1A     0 594102056 213000000 218000000
2  1B     0 689851870 240600000 245600000
3  1D     0 495453186 170000000 175000000
4  2A     0 780798557 326650000 331650000
5  2B     0 801256715 347850000 352850000
6  2D     0 651852609 268450000 273450000

先从名为 "Ref_chromedata.txt" 的文件中读取数据,并将其存储在名为 df_chr_pos_cent 的数据框中,再选取某些列的内容,并将它们拼接成一个新的矩阵,自动计算每条染色体的起止位置和着丝粒的起止位置。

创建判定子代和亲本关系的函数

为了更方便的计算某个位点在亲本和子代中的存在情况,快速获得子代中突变信息的来源,创建一个亲缘关系判定函数。

复制代码
# 函数:输入两个亲本和子代基因型,判断子代来源
determine_progeny <- function(p1,p2,prog,name_p1,name_p2){
      if (p1 == p2){
            if (p1 == prog & p2 == prog){
                  return("Both")
            }else{
                  return("Unknown")
            }
      }else{
            if (p1 == prog){
                  return(name_p1)
            }else{
                  if (p2 == prog){
                        return(name_p2)
                  }else{
                        return("Unknown")
                  }
            }
      }
}

这个函数叫做 determine_progeny,它用于确定两个亲本(p1 和 p2)以及一个后代(prog)之间的关系。

参数说明:

  • p1 - 第一个亲本的标识。
  • p2 - 第二个亲本的标识。
  • prog - 后代的标识。
  • name_p1 - 第一个亲本的名字
  • name_p2 - 第二个亲本的名字

功能介绍:

首先,检查如果第一个亲本 p1 和第二个亲本 p2 相等,那么它们之间的关系有两种情况:

  1. 如果它们都等于后代 prog,那么返回 "Both",表示两个亲本都与后代相关。
  2. 另外一种情况,返回 "Unknown",表示无法确定它们之间的关系。

如果第一个亲本 p1 和第二个亲本 p2 不相等,那么它们之间的关系也有两种情况:

  1. 如果第一个亲本 p1 等于后代 prog,那么返回 name_p1,表示第一个亲本是后代的亲本。
  2. 如果第二个亲本 p2 等于后代 prog,那么返回 name_p2,表示第二个亲本是后代的亲本。

最后,如果以上条件都不满足,返回 "Unknown",表示无法确定它们之间的关系。 这个函数的目的是根据输入的亲本和后代信息,确定它们之间的关系,并返回一个相应的标注信息。

创建判定杂合子的函数

如果某些位点为杂合状态,需要对其进行识别标注,以下提供一种算法进行识别:

复制代码
# 函数:判断杂合子
decide_hybrid <- function(genetype){
      tem <- str_split(genetype,"")
      if (length(tem[[1]]) != 2){
            return("Error")
      }else{
            first <- tem[[1]][1]
            sencend <- tem[[1]][2]
            if (first == sencend){
                  return("equal")
            }else{return("diff")}
      }
}

这段代码定义了一个名为decide_hybrid的函数,其作用是接受一个字符串参数genetype,然后将该字符串拆分成两个字符,并检查这两个字符是否相等。

如果输入字符串的长度不等于2,函数将返回"Error",表示输入错误。

否则,如果两个字符相等,函数将返回"equal",表示相等。

如果两个字符不相等,函数将返回"diff",表示不相等。这个函数主要用于比较输入的基因型是否相等或不等。

计算每个位点的变异类型

复制代码
for (i in 1:nrow(df)){
      if (df$chr[i] == "#N/A"){
            df$type[i] <- "del"
            next
      }
      if (df$pos[i] == "#N/A"){
            df$type[i] <- "del"
            next
      }
      if (decide_hybrid(df[i,3]) == "diff" |
          decide_hybrid(df[i,4]) == "diff" |
          decide_hybrid(df[i,5]) == "diff"){
            df$type[i] <- "del"
            next
      }
      df$type[i] <- determine_progeny(df[i,3],df[i,4],df[i,5],
                                      colnames(df)[3],colnames(df)[4])
}

这段代码的主要作用是根据一系列条件来确定df 数据框中每一行的"type"列的值,并根据不同条件进行相应的处理。如果某些条件满足,它将类型设置为 "del",否则它会计算新的类型并将其存储在数据框中。

绘图数据初步整理

复制代码
df_marker <- df %>% filter(type != "del")
df_marker$chr <- sub("chr","",df_marker$chr)
df_marker$Start <- df_marker$pos
df_marker$End <- as.numeric(df_marker$pos) + my_singewidth
df_marker$Value[which(df_marker$type == "Both")] <- 4
df_marker$Value[which(df_marker$type == colnames(df)[3])] <- 3
df_marker$Value[which(df_marker$type == colnames(df)[4])] <- 2
df_marker$Value[which(df_marker$type == "Unknown")] <- 1

首先从数据框df中筛选出type列不等于"del"的行,然后对筛选后的数据框df_marker进行一系列操作:

移除df_marker$chr列中的"chr"前缀,将结果存储回df_marker$chr中。 将df_marker$pos列的值赋给新的列df_marker$Start,以便将位置信息重命名。 根据my_singewidth的值计算新的列df_marker$End,该列的值等于df_marker$pos加上my_singewidth的数值。

根据条件对df_marker$Value列进行更新,将根据type列的不同值分配不同的数值,以下为对应规则:

复制代码
如果type等于"Both",则将df_marker$Value设置为4。
如果type等于数据框中的第三列的列名,则将df_marker$Value设置为3。
如果type等于数据框中的第四列的列名,则将df_marker$Value设置为2。
如果type等于"Unknown",则将df_marker$Value设置为1。

主要目的是根据条件对df数据框进行筛选和转换操作,创建一个数据框df_marker,其中包括重命名列、计算新列以及根据不同的type值赋予相应的数值。

转换数据格式

复制代码
df_marker_plot <- cbind(df_marker[,c(1,7,8,9)])
df_marker_plot <- df_marker_plot %>% 
      mutate_at(vars(Start,End,Value),as.integer)
df_marker_plot <- df_marker_plot[which(df_marker_plot$chr !="Un"),]
colnames(df_marker_plot) <- c("Chr","Start","End","Value")

这段代码的功能是对名为df_marker的数据框进行处理,首先选择其中的特定列(第1、7、8、9列),然后将这些列的数据类型转换为整数类型,接着从中删除chr列值不等于"Un"的行,最后重命名这些列为"Chr"、"Start"、"End"和"Value",用于后续的数据可视化或分析。

绘制染色体全景图

复制代码
# 绘制全景图
ideogram(karyotype = df_chr_pos_cent,
         overlaid = df_marker_plot,
         colorset1 = my_color)
convertSVG("chromosome.svg", device = "pdf")

最后,使用如上代码即可生成最终的结果图片。该R包非常巧妙的使用SVG语法构建图形,并且提供了svg转pdf、png等多种方式。
提示:分类型离散数据通过数值映射转换为连续型,便可以通过函数进行绘图计算,如果有多个维度的数据需要展示,可以添加其他类型的标注。

多组学应用:

  • 差异表达基因的分布(RNA-seq)
  • 开放染色质的分布(ATAC-seq)
  • CTCF结合位点(ChIP-seq)
  • 突变位点在染色体上的分布(WGS)
  • DNA甲基化的分布(WGBS)
  • 外显子在染色体上的分布(WES)

遗传学应用:

本文由mdnice多平台发布

相关推荐
程序员岳焱13 分钟前
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
后端·sql·mysql
龚思凯19 分钟前
Node.js 模块导入语法变革全解析
后端·node.js
天行健的回响22 分钟前
枚举在实际开发中的使用小Tips
后端
wuhunyu28 分钟前
基于 langchain4j 的简易 RAG
后端
techzhi28 分钟前
SeaweedFS S3 Spring Boot Starter
java·spring boot·后端
写bug写bug2 小时前
手把手教你使用JConsole
java·后端·程序员
苏三说技术2 小时前
给你1亿的Redis key,如何高效统计?
后端
JohnYan2 小时前
工作笔记- 记一次MySQL数据移植表空间错误排除
数据库·后端·mysql
程序员清风2 小时前
阿里二面:Kafka 消费者消费消息慢(10 多分钟),会对 Kafka 有什么影响?
java·后端·面试
CodeSheep3 小时前
宇树科技,改名了!
前端·后端·程序员