pytorch & tensorflow 保存和加载模型

1. Pytorch

1.1.1 save网络结构和参数:

注意最后一行为"self.state_dict()"

python 复制代码
    def save(self,t):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path = 'model/2E_model_' + t + '_'+self.name+'/'

        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        save_file_path=os.path.join(save_path, 'model.pth')

        torch.save(self.state_dict(),save_file_path)

1.1.2 对应的加载模型参数:

注意对应"agent.load_state_dict(checkpoint)"

python 复制代码
    def load(self,agent,model_path):
        model_pth = 'model.pth'
        model_path = os.path.join(model_path,model_pth)
        checkpoint = torch.load(model_path)
        agent.load_state_dict(checkpoint)
        agent.eval()

1.2.1 保存整个模型

注意为"torch.save(self.model,save_file_path)"

python 复制代码
    def save(self,t):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path = 'model/model_' + t + '_'+self.name+'/'

        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        save_file_path=os.path.join(save_path, 'model.pth')

        torch.save(self.model,save_file_path)

1.2.2 加载整个模型

注意"self.model = torch.load(model_path)"

python 复制代码
    def load(self,model_path):
        model_pth = 'model.pth'
        model_path = os.path.join(model_path,model_pth)
        self.model = torch.load(model_path)
        self.model.eval()

如果没对应上会报错:torch.nn.modules.module.ModuleAttributeError: object has no attribute 'copy',参考此链接

2. Tensorflow

2.1 保存模型

python 复制代码
    def save(self,time):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path='model/model_'+time+'_'+self.name+'/weights_'+self.name
        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):os.makedirs(save_path)
        self.saver.save(self.sess,save_path)

2.2 加载模型

python 复制代码
    def load(self,model_path):
        meta_path = 'weights_'+self.name+'.meta'

        mata_path_dir = os.path.join(model_path,meta_path)

        self.saver = tf.compat.v1.train.import_meta_graph(mata_path_dir)
        a=model_path+'/'
        self.saver.restore(self.sess, tf.train.latest_checkpoint(a))
相关推荐
誉鏐7 分钟前
PyTorch复现线性模型
人工智能·pytorch·python
我要昵称干什么8 分钟前
基于S函数的simulink仿真
人工智能·算法
向上的车轮9 分钟前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
AndrewHZ33 分钟前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
Ai尚研修-贾莲33 分钟前
基于DeepSeek、ChatGPT支持下的地质灾害风险评估、易发性分析、信息化建库及灾后重建
人工智能·chatgpt
SelectDB技术团队1 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
weixin_435208161 小时前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
大数据在线1 小时前
AI重塑云基础设施,亚马逊云科技打造AI定制版IaaS“样板房”
人工智能·云基础设施·ai大模型·亚马逊云科技
hello_ejb31 小时前
聊聊Spring AI的RetrievalAugmentationAdvisor
人工智能·spring·restful
你觉得2051 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint