pytorch & tensorflow 保存和加载模型

1. Pytorch

1.1.1 save网络结构和参数:

注意最后一行为"self.state_dict()"

python 复制代码
    def save(self,t):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path = 'model/2E_model_' + t + '_'+self.name+'/'

        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        save_file_path=os.path.join(save_path, 'model.pth')

        torch.save(self.state_dict(),save_file_path)

1.1.2 对应的加载模型参数:

注意对应"agent.load_state_dict(checkpoint)"

python 复制代码
    def load(self,agent,model_path):
        model_pth = 'model.pth'
        model_path = os.path.join(model_path,model_pth)
        checkpoint = torch.load(model_path)
        agent.load_state_dict(checkpoint)
        agent.eval()

1.2.1 保存整个模型

注意为"torch.save(self.model,save_file_path)"

python 复制代码
    def save(self,t):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path = 'model/model_' + t + '_'+self.name+'/'

        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        save_file_path=os.path.join(save_path, 'model.pth')

        torch.save(self.model,save_file_path)

1.2.2 加载整个模型

注意"self.model = torch.load(model_path)"

python 复制代码
    def load(self,model_path):
        model_pth = 'model.pth'
        model_path = os.path.join(model_path,model_pth)
        self.model = torch.load(model_path)
        self.model.eval()

如果没对应上会报错:torch.nn.modules.module.ModuleAttributeError: object has no attribute 'copy',参考此链接

2. Tensorflow

2.1 保存模型

python 复制代码
    def save(self,time):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path='model/model_'+time+'_'+self.name+'/weights_'+self.name
        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):os.makedirs(save_path)
        self.saver.save(self.sess,save_path)

2.2 加载模型

python 复制代码
    def load(self,model_path):
        meta_path = 'weights_'+self.name+'.meta'

        mata_path_dir = os.path.join(model_path,meta_path)

        self.saver = tf.compat.v1.train.import_meta_graph(mata_path_dir)
        a=model_path+'/'
        self.saver.restore(self.sess, tf.train.latest_checkpoint(a))
相关推荐
泰迪智能科技011 分钟前
泰迪智能科技人工智能综合实验箱功能简介及实训支持内容介绍
人工智能·科技
DS随心转小程序13 分钟前
DeepSeek井号解决方法
人工智能·aigc·deepseek·ds随心转
安全二次方security²17 分钟前
CUDA C++编程指南(7.15&16)——C++语言扩展之内存空间谓词和转化函数
c++·人工智能·nvidia·cuda·内存空间谓词函数·内存空间转化函数·address space
laplace012320 分钟前
大模型整个训练流程
人工智能·深度学习·embedding·agent·rag
Pythonliu720 分钟前
AI4Science 模型 平台 开源 智能 未来
人工智能·蛋白
aiguangyuan38 分钟前
从零实现循环神经网络:中文情感分析的完整实践指南
人工智能·python·nlp
Master_oid38 分钟前
机器学习30:神经网络压缩(Network Compression)①
人工智能·神经网络·机器学习
xinyuan_1234561 小时前
不止于提速:德州数智招标采购交易平台,重塑采购生态新效率
大数据·人工智能
沃达德软件1 小时前
智能车辆检索系统解析
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·目标跟踪
java1234_小锋1 小时前
【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 使用datasets库加载Huggingface数据集
人工智能·深度学习