pytorch & tensorflow 保存和加载模型

1. Pytorch

1.1.1 save网络结构和参数:

注意最后一行为"self.state_dict()"

python 复制代码
    def save(self,t):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path = 'model/2E_model_' + t + '_'+self.name+'/'

        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        save_file_path=os.path.join(save_path, 'model.pth')

        torch.save(self.state_dict(),save_file_path)

1.1.2 对应的加载模型参数:

注意对应"agent.load_state_dict(checkpoint)"

python 复制代码
    def load(self,agent,model_path):
        model_pth = 'model.pth'
        model_path = os.path.join(model_path,model_pth)
        checkpoint = torch.load(model_path)
        agent.load_state_dict(checkpoint)
        agent.eval()

1.2.1 保存整个模型

注意为"torch.save(self.model,save_file_path)"

python 复制代码
    def save(self,t):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path = 'model/model_' + t + '_'+self.name+'/'

        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        save_file_path=os.path.join(save_path, 'model.pth')

        torch.save(self.model,save_file_path)

1.2.2 加载整个模型

注意"self.model = torch.load(model_path)"

python 复制代码
    def load(self,model_path):
        model_pth = 'model.pth'
        model_path = os.path.join(model_path,model_pth)
        self.model = torch.load(model_path)
        self.model.eval()

如果没对应上会报错:torch.nn.modules.module.ModuleAttributeError: object has no attribute 'copy',参考此链接

2. Tensorflow

2.1 保存模型

python 复制代码
    def save(self,time):
        current_path = os.path.dirname(os.path.abspath(__file__))
        model_path='model/model_'+time+'_'+self.name+'/weights_'+self.name
        save_path = os.path.join(current_path,model_path)
        if not os.path.exists(save_path):os.makedirs(save_path)
        self.saver.save(self.sess,save_path)

2.2 加载模型

python 复制代码
    def load(self,model_path):
        meta_path = 'weights_'+self.name+'.meta'

        mata_path_dir = os.path.join(model_path,meta_path)

        self.saver = tf.compat.v1.train.import_meta_graph(mata_path_dir)
        a=model_path+'/'
        self.saver.restore(self.sess, tf.train.latest_checkpoint(a))
相关推荐
oliveray6 小时前
ATPrompt:基于属性的视觉提示
人工智能·prompt·vlm
云烟飘渺o6 小时前
生活视角下Prompt 提示词思考
人工智能·prompt·生活
渡我白衣6 小时前
C++世界的混沌边界:undefined_behavior
java·开发语言·c++·人工智能·深度学习·语言模型
AcrelGHP6 小时前
光储充微电网能量管理系统:构建绿色、高效、安全的能源未来
大数据·运维·人工智能
格林威6 小时前
AOI在人形机器人制造领域的应用
人工智能·数码相机·算法·目标跟踪·机器人·视觉检测·制造
FightingITPanda6 小时前
Spring AI 搭建 RAG 个人知识库
人工智能·知识库·rag·springai·向量库
前端双越老师7 小时前
让我每天沉浸于 AI 编程的大玩具
人工智能
却道天凉_好个秋7 小时前
OpenCV(十八):绘制文本
人工智能·opencv·计算机视觉
rengang667 小时前
105-Spring AI Alibaba Module RAG 使用示例
java·人工智能·spring·rag·spring ai·ai应用编程
说私域7 小时前
开源AI智能客服、AI智能名片与S2B2C商城小程序在营销运营中的应用与重要性研究
人工智能·小程序·开源