Apache DolphinScheduler 如何实现自动化打包+单机/集群部署?

Apache DolphinScheduler 是一款开源的分布式任务调度系统,旨在帮助用户实现复杂任务的自动化调度和管理。DolphinScheduler 支持多种任务类型,可以在单机或集群环境下运行。下面将介绍如何实现 DolphinScheduler 的自动化打包和单机/集群部署。

自动化打包

所需环境:maven、jdk

执行以下shell完成代码拉取及打包,打包路径:/opt/action/dolphinscheduler/dolphinscheduler-dist/target/apache-dolphinscheduler-dev-SNAPSHOT-bin.tar.gz

clone_init(){​ 复制代码
sudo su - root <<EOF
cd /opt/action
git clone git@github.com:apache/dolphinscheduler.git
cd Dolphinscheduler
git fetch origin dev
git checkout -b dev origin/dev
#git log --oneline
EOF
}

# 打包
build(){
sudo su - root <<EOF
cd /opt/action/Dolphinscheduler
mvn -B clean install -Prelease -Dmaven.test.skip=true -Dcheckstyle.skip=true -Dmaven.javadoc.skip=true
EOF
}

单机部署

1、DolphinScheduler运行所需环境

所需环境jdk、zookeeper、mysql

初始化zookeeper(高版本zookeeper推荐使用v3.8及以上版本)环境

安装包官网下载地址:https://zookeeper.apache.org/

sudo su - root <<EOF
#进入/opt目录下(安装目录自行选择)
cd /opt
#解压缩
tar -xvf apache-zookeeper-3.8.0-bin.tar.gz
#修改文件名称
sudo mv apache-zookeeper-3.8.0-bin zookeeper
#进入zookeeper目录
cd zookeeper/
#在 /opt/zookeeper 目录下创建目录 zkData,用来存放 zookeeper 的数据文件
mkdir zkData
#进入conf文件夹
cd conf/
#修改配置文件,复制 zoo_sample.cfg 文件并重命名为 zoo.cfg因为zookeeper只能识别 zoo.cfg 配置文件
cp zoo_sample.cfg zoo.cfg
#修改 zoo.cfg 的配置
sed  -i 's/\/tmp\/zookeeper/\/opt\/zookeeper\/conf/g' zoo.cfg
#停止之前的zk服务
ps -ef|grep QuorumPeerMain|grep -v grep|awk '{print "kill -9 " $2}' |sh
#使用 vim zoo.cfg 命令修改 zoo.cfg 的配置
sh /opt/zookeeper/bin/zkServer.sh start
EOF
}

jdk、mysql这里不做过多赘述。

2、初始化配置

2.1 配置文件初始化

初始化文件要放到指定目录(本文章以/opt/action/tool举例)

  • 2.1.1新建文件夹

    mkdir -p /opt/action/tool
    mkdir -p /opt/Dsrelease
    
  • 2.1.2新建初始化文件common.properties

    Licensed to the Apache Software Foundation (ASF) under one or more

    contributor license agreements. See the NOTICE file distributed with

    this work for additional information regarding copyright ownership.

    The ASF licenses this file to You under the Apache License, Version 2.0

    (the "License"); you may not use this file except in compliance with

    the License. You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software

    distributed under the License is distributed on an "AS IS" BASIS,

    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

    See the License for the specific language governing permissions and

    limitations under the License.

    user data local directory path, please make sure the directory exists and have read write permissions

    data.basedir.path=/tmp/dolphinscheduler

    resource storage type: HDFS, S3, NONE

    resource.storage.type=HDFS

    resource store on HDFS/S3 path, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions. "/dolphinscheduler" is recommended

    resource.upload.path=/dolphinscheduler

    whether to startup kerberos

    hadoop.security.authentication.startup.state=false

    java.security.krb5.conf path

    java.security.krb5.conf.path=/opt/krb5.conf

    login user from keytab username

    login.user.keytab.username=hdfs-mycluster@ESZ.COM

    login user from keytab path

    login.user.keytab.path=/opt/hdfs.headless.keytab

    kerberos expire time, the unit is hour

    kerberos.expire.time=2

    resource view suffixs

    #resource.view.suffixs=txt,log,sh,bat,conf,cfg,py,java,sql,xml,hql,properties,json,yml,yaml,ini,js

    if resource.storage.type=HDFS, the user must have the permission to create directories under the HDFS root path

    hdfs.root.user=root

    if resource.storage.type=S3, the value like: s3a://dolphinscheduler; if resource.storage.type=HDFS and namenode HA is enabled, you need to copy core-site.xml and hdfs-site.xml to conf dir

    fs.defaultFS=file:///
    aws.access.key.id=minioadmin
    aws.secret.access.key=minioadmin
    aws.region=us-east-1
    aws.endpoint=http://localhost:9000

    resourcemanager port, the default value is 8088 if not specified

    resource.manager.httpaddress.port=8088

    if resourcemanager HA is enabled, please set the HA IPs; if resourcemanager is single, keep this value empty

    yarn.resourcemanager.ha.rm.ids=192.168.xx.xx,192.168.xx.xx

    if resourcemanager HA is enabled or not use resourcemanager, please keep the default value; If resourcemanager is single, you only need to replace aws2 to actual resourcemanager hostname

    yarn.application.status.address=http://aws2:%s/ws/v1/cluster/apps/%s

    job history status url when application number threshold is reached(default 10000, maybe it was set to 1000)

    yarn.job.history.status.address=http://aws2:19888/ws/v1/history/mapreduce/jobs/%s

    datasource encryption enable

    datasource.encryption.enable=false

    datasource encryption salt

    datasource.encryption.salt=!@#$%^&*

    data quality option

    data-quality.jar.name=dolphinscheduler-data-quality-dev-SNAPSHOT.jar

    #data-quality.error.output.path=/tmp/data-quality-error-data

    Network IP gets priority, default inner outer

    Whether hive SQL is executed in the same session

    support.hive.oneSession=false

    use sudo or not, if set true, executing user is tenant user and deploy user needs sudo permissions; if set false, executing user is the deploy user and doesn't need sudo permissions

    sudo.enable=true

    network interface preferred like eth0, default: empty

    #dolphin.scheduler.network.interface.preferred=

    network IP gets priority, default: inner outer

    #dolphin.scheduler.network.priority.strategy=default

    system env path

    #dolphinscheduler.env.path=dolphinscheduler_env.sh

    development state

    development.state=false

    rpc port

    alert.rpc.port=50052

    Url endpoint for zeppelin RESTful API

    zeppelin.rest.url=http://localhost:8080

  • 2.1.3新建初始化文件core-site.xml

    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
      http://www.apache.org/licenses/LICENSE-2.0
    
    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License. See accompanying LICENSE file.
    

    -->

    <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://aws1</value> </property> <property> <name>ha.zookeeper.quorum</name> <value>aws1:2181</value> </property> <property> <name>hadoop.proxyuser.root.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.root.groups</name> <value>*</value> </property> </configuration>
  • 2.1.4新建初始化文件hdfs-site.xml

    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
      http://www.apache.org/licenses/LICENSE-2.0
    
    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License. See accompanying LICENSE file.
    

    -->

    <configuration> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>/opt/bigdata/hadoop/ha/dfs/name</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>/opt/bigdata/hadoop/ha/dfs/data</value> </property> <property> <name>dfs.namenode.secondary.http-address</name> <value>aws2:50090</value> </property> <property> <name>dfs.namenode.checkpoint.dir</name> <value>/opt/bigdata/hadoop/ha/dfs/secondary</value> </property> <property> <name>dfs.nameservices</name> <value>aws1</value> </property> <property> <name>dfs.ha.namenodes.aws1</name> <value>nn1,nn2</value> </property> <property> <name>dfs.namenode.rpc-address.aws1.nn1</name> <value>aws1:8020</value> </property> <property> <name>dfs.namenode.rpc-address.aws1.nn2</name> <value>aws2:8020</value> </property> <property> <name>dfs.namenode.http-address.aws1.nn1</name> <value>aws1:50070</value> </property> <property> <name>dfs.namenode.http-address.aws1.nn2</name> <value>aws2:50070</value> </property> <property> <property> <name>dfs.datanode.address</name> <value>aws1:50010</value> </property> <property> <name>dfs.datanode.ipc.address</name> <value>aws1:50020</value> </property> <property> <name>dfs.datanode.http.address</name> <value>aws1:50075</value> </property> <property> <name>dfs.datanode.https.address</name> <value>aws1:50475</value> </property>

    <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://aws1:8485;aws2:8485;aws3:8485/mycluster</value>
    </property>
    <property>
    <name>dfs.journalnode.edits.dir</name>
    <value>/opt/bigdata/hadoop/ha/dfs/jn</value>
    </property>
    <property>
    <name>dfs.client.failover.proxy.provider.aws1</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence</value>
    </property>
    <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/root/.ssh/id_dsa</value>
    </property>
    <property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
    </property>
    </configuration>

  • 2.1.5上传初始化jar包mysql-connector-java-8.0.16.jar

  • 2.1.6上传初始化jar包ojdbc8.jar

2.2 初始化文件替换

cd /opt/Dsrelease
sudo rm -r $today/

echo "rm -r $today"

cd /opt/release

cp $packge_tar /opt/Dsrelease

cd /opt/Dsrelease

tar -zxvf $packge_tar
mv $packge  $today
p_api_lib=/opt/Dsrelease/$today/api-server/libs/
p_master_lib=/opt/Dsrelease/$today/master-server/libs/
p_worker_lib=/opt/Dsrelease/$today/worker-server/libs/
p_alert_lib=/opt/Dsrelease/$today/alert-server/libs/
p_tools_lib=/opt/Dsrelease/$today/tools/libs/
p_st_lib=/opt/Dsrelease/$today/standalone-server/libs/


p_api_conf=/opt/Dsrelease/$today/api-server/conf/
p_master_conf=/opt/Dsrelease/$today/master-server/conf/
p_worker_conf=/opt/Dsrelease/$today/worker-server/conf/
p_alert_conf=/opt/Dsrelease/$today/alert-server/conf/
p_tools_conf=/opt/Dsrelease/$today/tools/conf/
p_st_conf=/opt/Dsrelease/$today/standalone-server/conf/


cp $p0 $p4 $p_api_lib
cp $p0 $p4 $p_master_lib
cp $p0 $p4 $p_worker_lib
cp $p0 $p4 $p_alert_lib
cp $p0 $p4 $p_tools_lib
cp $p0 $p4 $p_st_lib

echo "cp $p0 $p_api_lib"

cp $p1 $p2 $p3 $p_api_conf
cp $p1 $p2 $p3 $p_master_conf
cp $p1 $p2 $p3 $p_worker_conf
cp $p1 $p2 $p3 $p_alert_conf
cp $p1 $p2 $p3 $p_tools_conf
cp $p1 $p2 $p3 $p_st_conf



echo "cp $p1 $p2 $p3 $p_api_conf"
}

define_param(){

packge_tar=apache-dolphinscheduler-dev-SNAPSHOT-bin.tar.gz
packge=apache-dolphinscheduler-dev-SNAPSHOT-bin
p0=/opt/action/tool/mysql-connector-java-8.0.16.jar
p1=/opt/action/tool/common.properties
p2=/opt/action/tool/core-site.xml
p3=/opt/action/tool/hdfs-site.xml
p4=/opt/action/tool/ojdbc8.jar

today=`date +%m%d`


}

2.3 配置文件内容替换

sed  -i 's/spark2/spark/g' /opt/Dsrelease/$today/worker-server/conf/dolphinscheduler_env.sh

cd /opt/Dsrelease/$today/bin/env/
sed -i '$a\export SPRING_PROFILES_ACTIVE=permission_shiro' dolphinscheduler_env.sh
sed -i '$a\export DATABASE="mysql"' dolphinscheduler_env.sh
sed -i '$a\export SPRING_DATASOURCE_DRIVER_CLASS_NAME="com.mysql.jdbc.Driver"' dolphinscheduler_env.sh
#自定义修改mysql配置
sed -i '$a\export SPRING_DATASOURCE_URL="jdbc:mysql://ctyun6:3306/dolphinscheduler?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&allowPublicKeyRetrieval=true"' dolphinscheduler_env.sh
sed -i '$a\export SPRING_DATASOURCE_USERNAME="root"' dolphinscheduler_env.sh
sed -i '$a\export SPRING_DATASOURCE_PASSWORD="root@123"' dolphinscheduler_env.sh
echo "替换jdbc配置成功"
#自定义修改zookeeper配置
sed -i '$a\export REGISTRY_TYPE=${REGISTRY_TYPE:-zookeeper}' dolphinscheduler_env.sh
sed -i '$a\export REGISTRY_ZOOKEEPER_CONNECT_STRING=${REGISTRY_ZOOKEEPER_CONNECT_STRING:-ctyun6:2181}' dolphinscheduler_env.sh
echo "替换zookeeper配置成功"
sed -i 's/resource.storage.type=HDFS/resource.storage.type=NONE/' /opt/Dsrelease/$today/master-server/conf/common.properties
sed -i 's/resource.storage.type=HDFS/resource.storage.type=NONE/' /opt/Dsrelease/$today/worker-server/conf/common.properties
sed -i 's/resource.storage.type=HDFS/resource.storage.type=NONE/' /opt/Dsrelease/$today/alert-server/conf/common.properties
sed -i 's/resource.storage.type=HDFS/resource.storage.type=NONE/' /opt/Dsrelease/$today/api-server/conf/common.properties
sed -i 's/hdfs.root.user=root/resource.hdfs.root.user=root/' /opt/Dsrelease/$today/master-server/conf/common.properties
sed -i 's/hdfs.root.user=root/resource.hdfs.root.user=root/' /opt/Dsrelease/$today/worker-server/conf/common.properties
sed -i 's/hdfs.root.user=root/resource.hdfs.root.user=root/' /opt/Dsrelease/$today/alert-server/conf/common.properties
sed -i 's/hdfs.root.user=root/resource.hdfs.root.user=root/' /opt/Dsrelease/$today/api-server/conf/common.properties
sed -i 's/fs.defaultFS=file:/resource.fs.defaultFS=file:/' /opt/Dsrelease/$today/master-server/conf/common.properties
sed -i 's/fs.defaultFS=file:/resource.fs.defaultFS=file:/' /opt/Dsrelease/$today/worker-server/conf/common.properties
sed -i 's/fs.defaultFS=file:/resource.fs.defaultFS=file:/' /opt/Dsrelease/$today/alert-server/conf/common.properties
sed -i 's/fs.defaultFS=file:/resource.fs.defaultFS=file:/' /opt/Dsrelease/$today/api-server/conf/common.properties
sed -i '$a\resource.hdfs.fs.defaultFS=file:///' /opt/Dsrelease/$today/api-server/conf/common.properties
echo "替换common.properties配置成功"
# 替换master worker内存 api alert也可进行修改,具体根据当前服务器硬件配置而定,但要遵循Xms=Xmx=2Xmn的规律
cd /opt/Dsrelease/$today/
sed -i 's/Xms4g/Xms2g/g' worker-server/bin/start.sh
sed -i 's/Xmx4g/Xmx2g/g' worker-server/bin/start.sh
sed -i 's/Xmn2g/Xmn1g/g' worker-server/bin/start.sh
sed -i 's/Xms4g/Xms2g/g' master-server/bin/start.sh
sed -i 's/Xmx4g/Xmx2g/g' master-server/bin/start.sh
sed -i 's/Xmn2g/Xmn1g/g' master-server/bin/start.sh
echo "master worker内存修改完成"

}

3、删除HDFS配置

echo "开始删除hdfs配置"
sudo rm /opt/Dsrelease/$today/api-server/conf/core-site.xml
sudo rm /opt/Dsrelease/$today/api-server/conf/hdfs-site.xml
sudo rm /opt/Dsrelease/$today/worker-server/conf/core-site.xml
sudo rm /opt/Dsrelease/$today/worker-server/conf/hdfs-site.xml
sudo rm /opt/Dsrelease/$today/master-server/conf/core-site.xml
sudo rm /opt/Dsrelease/$today/master-server/conf/hdfs-site.xml
sudo rm /opt/Dsrelease/$today/alert-server/conf/core-site.xml
sudo rm /opt/Dsrelease/$today/alert-server/conf/hdfs-site.xml
echo "结束删除hdfs配置"
}

4、MySQL初始化

init_mysql(){

sql_path="/opt/Dsrelease/$today/tools/sql/sql/dolphinscheduler_mysql.sql"
sourceCommand="source $sql_path"
echo $sourceCommand
echo "开始source:"
mysql -hlocalhost -uroot -proot@123 -D "dolphinscheduler" -e "$sourceCommand"
echo "结束source:"
}

5、启动DolphinScheduler服务

stop_all_server(){
cd /opt/Dsrelease/$today
./bin/dolphinscheduler-daemon.sh stop api-server
./bin/dolphinscheduler-daemon.sh stop master-server
./bin/dolphinscheduler-daemon.sh stop worker-server
./bin/dolphinscheduler-daemon.sh stop alert-server
ps -ef|grep api-server|grep -v grep|awk '{print "kill -9 " $2}' |sh
ps -ef|grep master-server |grep -v grep|awk '{print "kill -9 " $2}' |sh
ps -ef|grep worker-server |grep -v grep|awk '{print "kill -9 " $2}' |sh
ps -ef|grep alert-server |grep -v grep|awk '{print "kill -9 " $2}' |sh
}

run_all_server(){
cd /opt/Dsrelease/$today
./bin/dolphinscheduler-daemon.sh start api-server
./bin/dolphinscheduler-daemon.sh start master-server
./bin/dolphinscheduler-daemon.sh start worker-server
./bin/dolphinscheduler-daemon.sh start alert-server
}

集群部署

1、开放mysql和zookeeper对外端口 2、集群部署及启动

复制完成初始化的文件夹到指定的服务器,启动指定服务即可完成集群部署,要连同一个Zookeeper和MySQL。

本文由 白鲸开源科技 提供发布支持!

相关推荐
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
TGB-Earnest3 小时前
【py脚本+logstash+es实现自动化检测工具】
大数据·elasticsearch·自动化
大圣数据星球5 小时前
Fluss 写入数据湖实战
大数据·设计模式·flink
suweijie7685 小时前
SpringCloudAlibaba | Sentinel从基础到进阶
java·大数据·sentinel
Data跳动10 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc11111 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq12 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq12 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈12 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据