【论文记录】Boosting Detection in Crowd Analysis via Underutilized Output Features

Boosting Detection in Crowd Analysis via Underutilized Output Features

Abstract

Crowd Hat使用一种混合的2D-1D压缩技术进行细化空间特征与获取特定人群信息的空间和数量分布。进一步的,Crowd Hat采用自适应区域的NMS阈值与一个解耦然后对齐的范式来解决基于检测方法的缺陷。

Methodology

作者认为检测得到预测的Bounding Boxes和Proposals包含丰富的特定人群信息。作者采用检测结果的区域尺寸和置信度分数。他认为这些特征对于人群分析是Pure。

Output Feature Compression

直接把检测结果的中心坐标映射到输入图片上,得到的生成特征图存在着预测的Bounding Boxes和Proposals数量远小于图片中像素的数量,会导致特征图过于稀疏无法传递关键信息。

作者提出了一种混合的2D-1D压缩方法进一步细化输出特征,获得这些特定人群信息的空间和数量分布。

2D Compression

作者首先根据Proposal或者Bounding Box的中心坐标把他们映射到输入图片上,然后把图片分成S×S个Patches,将Patches的元素相加获得压缩矩阵M中的相应元素。

1D Compression

1D压缩用来寻找输出特征的数值分布。例如一个低的输出Bounding box area sizes分布可能暗示一个很高的人群密度。

首先,作者正则化置信度分数和区域尺寸值到[0,1]区间。然后将区间分成L个间隔。最后,计算落入每个区间值的数量。


Crowd Hat Network

把2D压缩矩阵堆叠成t~2d~,把1D压缩矩阵堆叠成t~1d~。

Region-Adaptive NMS Decoder

将全局特征与局部特征进行连接,然后输入到MLP中,生成region-adaptive NMS阈值。

Decouple-then-Align Paradigm

作者通过直接使用全局特征回归人群数量,对模型的检测过程与计数过程进行了解耦,使用一个独立的MLP作为Count Decoder P~C~去预测人群数量。

将Bounding Boxes与Count中值小的且置信度高的作为最终结果。

Summary

本文的主要思想是通过Proposals和Bounding Boxes获取特定人群的空间信息和数值信息,根据这些信息学习自适应的NMS阈值与人群数量。

相关推荐
訾博ZiBo6 分钟前
AI日报 - 2025年3月13日
人工智能
音视频牛哥11 分钟前
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
人工智能·opencv·计算机视觉
SecPulse21 分钟前
AI开源竞赛与硬件革命:2025年3月科技热点全景解读——阿里、腾讯领跑开源,英特尔、台积电重塑算力格局
人工智能·科技·opencv·自然语言处理·开源·语音识别
云端源想23 分钟前
浅谈大语言模型(LLM)的微调与部署
人工智能·语言模型·自然语言处理
瑶光守护者1 小时前
并行计算编程模型的发展方向与RISC-V的机遇
人工智能·笔记·学习·架构·risc-v
初心丨哈士奇2 小时前
基于大模型的GitLab CodeReview 技术调研
前端·人工智能·node.js
Luis Li 的猫猫2 小时前
基于MATLAB的冰块变化仿真
开发语言·图像处理·人工智能·算法·matlab
xiatian_win1232 小时前
本地部署 OpenManus 保姆级教程(Windows 版)
人工智能·windows
蹦蹦跳跳真可爱5892 小时前
Python----计算机视觉处理(opencv:像素,RGB颜色,图像的存储,opencv安装,代码展示)
人工智能·python·opencv·计算机视觉
BIT_Legend3 小时前
Torch 模型 model => .onnx => .trt 及利用 TensorTR 在 C++ 下的模型部署教程
c++·人工智能·python·深度学习