【论文记录】Boosting Detection in Crowd Analysis via Underutilized Output Features

Boosting Detection in Crowd Analysis via Underutilized Output Features

Abstract

Crowd Hat使用一种混合的2D-1D压缩技术进行细化空间特征与获取特定人群信息的空间和数量分布。进一步的,Crowd Hat采用自适应区域的NMS阈值与一个解耦然后对齐的范式来解决基于检测方法的缺陷。

Methodology

作者认为检测得到预测的Bounding Boxes和Proposals包含丰富的特定人群信息。作者采用检测结果的区域尺寸和置信度分数。他认为这些特征对于人群分析是Pure。

Output Feature Compression

直接把检测结果的中心坐标映射到输入图片上,得到的生成特征图存在着预测的Bounding Boxes和Proposals数量远小于图片中像素的数量,会导致特征图过于稀疏无法传递关键信息。

作者提出了一种混合的2D-1D压缩方法进一步细化输出特征,获得这些特定人群信息的空间和数量分布。

2D Compression

作者首先根据Proposal或者Bounding Box的中心坐标把他们映射到输入图片上,然后把图片分成S×S个Patches,将Patches的元素相加获得压缩矩阵M中的相应元素。

1D Compression

1D压缩用来寻找输出特征的数值分布。例如一个低的输出Bounding box area sizes分布可能暗示一个很高的人群密度。

首先,作者正则化置信度分数和区域尺寸值到[0,1]区间。然后将区间分成L个间隔。最后,计算落入每个区间值的数量。


Crowd Hat Network

把2D压缩矩阵堆叠成t2d,把1D压缩矩阵堆叠成t1d

Region-Adaptive NMS Decoder

将全局特征与局部特征进行连接,然后输入到MLP中,生成region-adaptive NMS阈值。

Decouple-then-Align Paradigm

作者通过直接使用全局特征回归人群数量,对模型的检测过程与计数过程进行了解耦,使用一个独立的MLP作为Count Decoder PC去预测人群数量。

将Bounding Boxes与Count中值小的且置信度高的作为最终结果。

Summary

本文的主要思想是通过Proposals和Bounding Boxes获取特定人群的空间信息和数值信息,根据这些信息学习自适应的NMS阈值与人群数量。

相关推荐
java1234_小锋15 分钟前
PyTorch2 Python深度学习 - 自动微分(Autograd)与梯度优化
开发语言·python·深度学习·pytorch2
AI模块工坊16 分钟前
CVPR 即插即用 | PConv:重新定义高效卷积,一个让模型“跑”得更快、更省的新范式
人工智能·深度学习·计算机视觉·transformer
java1234_小锋23 分钟前
PyTorch2 Python深度学习 - 简介以及入门
python·深度学习·pytorch2
lzjava20241 小时前
Spring AI加DeepSeek实现一个Prompt聊天机器人
人工智能·spring·prompt
fanstuck2 小时前
AI辅助数学建模有哪些优势?
人工智能·数学建模·语言模型·aigc
一只安2 小时前
从零开发AI(不依赖任何模型)
人工智能·python
11年老程序猿在线搬砖3 小时前
如何搭建自己的量化交易平台
大数据·人工智能·python·自动交易·量化交易系统
Elastic 中国社区官方博客3 小时前
Elasticsearch 开放推理 API 增加了对 Google 的 Gemini 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·googlecloud
周杰伦_Jay3 小时前
【实战|旅游知识问答RAG系统全链路解析】从配置到落地(附真实日志数据)
大数据·人工智能·分布式·机器学习·架构·旅游·1024程序员节
架构技术专栏3 小时前
大模型安全:从对齐问题到对抗性攻击的深度分析
人工智能