【论文记录】Boosting Detection in Crowd Analysis via Underutilized Output Features

Boosting Detection in Crowd Analysis via Underutilized Output Features

Abstract

Crowd Hat使用一种混合的2D-1D压缩技术进行细化空间特征与获取特定人群信息的空间和数量分布。进一步的,Crowd Hat采用自适应区域的NMS阈值与一个解耦然后对齐的范式来解决基于检测方法的缺陷。

Methodology

作者认为检测得到预测的Bounding Boxes和Proposals包含丰富的特定人群信息。作者采用检测结果的区域尺寸和置信度分数。他认为这些特征对于人群分析是Pure。

Output Feature Compression

直接把检测结果的中心坐标映射到输入图片上,得到的生成特征图存在着预测的Bounding Boxes和Proposals数量远小于图片中像素的数量,会导致特征图过于稀疏无法传递关键信息。

作者提出了一种混合的2D-1D压缩方法进一步细化输出特征,获得这些特定人群信息的空间和数量分布。

2D Compression

作者首先根据Proposal或者Bounding Box的中心坐标把他们映射到输入图片上,然后把图片分成S×S个Patches,将Patches的元素相加获得压缩矩阵M中的相应元素。

1D Compression

1D压缩用来寻找输出特征的数值分布。例如一个低的输出Bounding box area sizes分布可能暗示一个很高的人群密度。

首先,作者正则化置信度分数和区域尺寸值到[0,1]区间。然后将区间分成L个间隔。最后,计算落入每个区间值的数量。


Crowd Hat Network

把2D压缩矩阵堆叠成t2d,把1D压缩矩阵堆叠成t1d

Region-Adaptive NMS Decoder

将全局特征与局部特征进行连接,然后输入到MLP中,生成region-adaptive NMS阈值。

Decouple-then-Align Paradigm

作者通过直接使用全局特征回归人群数量,对模型的检测过程与计数过程进行了解耦,使用一个独立的MLP作为Count Decoder PC去预测人群数量。

将Bounding Boxes与Count中值小的且置信度高的作为最终结果。

Summary

本文的主要思想是通过Proposals和Bounding Boxes获取特定人群的空间信息和数值信息,根据这些信息学习自适应的NMS阈值与人群数量。

相关推荐
子燕若水4 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室5 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿5 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫5 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说5 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
大千AI助手5 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记5 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元6 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术6 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端