五分钟搞懂python生成器迭代器

1、是什么

生成器和迭代器都是Python语言中的重要概念。

1.1 生成器

是什么?

生成器是一种特殊的函数,它可以逐步产生结果并在每个步骤中保持状态

如何理解?

生成器用yield返回一个值,在每个yield语句的位置上都会暂停执行,并将当前状态保存下来。当再次调用生成器时,它会从上次暂停的位置继续执行,并且能够恢复到之前的状态。这种方式使得生成器能够记住之前的计算结果,而不需要重新计算。这样生成器就可以在每个步骤中保持状态,以便下次继续使用。

有什么作用?

由于生成器在内存中只保留了当前状态以及生成下一个值所需的信息,因此它可以处理非常大的数据流,并且比传统的数据容器占用更少的内存。 通过调用next()方法或者使用for循环逐个获取生成器中的值,可以逐步获取生成器中的数据。

1.2 迭代器

迭代器是一种实现了特定方法(iter()和__next__())的对象。通过迭代器,我们可以逐步获取集合中的元素

2、案例

这里我们通过一个面试题带大家去深入理解

4G 内存怎么读取一个 5G 的数据?

答:通过生成器,分多次读取,每次读取数量相对少的数据(比如 500MB)进行处理,处理结束后

在读取后面的 500MB 的数据。

python 复制代码
# 定义一个生成器函数,在python中只要函数中使用yield字段就是一个生成器函数。生成器函数 用于创建 生成器迭代器 (generator iterator)。
def process_data(file_path, batch_size):
    with open(file_path, 'rb') as file:
        while True:
            data = file.read(batch_size)
            if not data:
                break
            # 在此处进行对数据的处理
            # 可以将处理后的结果返回,或者做其他操作
            yield data

# 使用示例
file_path = 'your_file_path'  # 文件路径
batch_size = 500 * 1024 * 1024  # 500MB,注意单位为字节

data_generator = process_data(file_path, batch_size)

#迭代方法一
while True:
    try:
        batch = next(data_generator)
        # 对每个批次的数据进行处理
    	# 可以调用相应的函数或方法进行处理
    	print(f"Processing {len(batch)} bytes of data")
    	# 这里只是简单示例,实际处理需要根据具体需求进行编写
    except StopIteration:
        break

#迭代方法二
#for batch in data_generator:
#	print(f"Processing {len(batch)} bytes of data")
相关推荐
java1234_小锋1 分钟前
TensorFlow2 Python深度学习 - 通俗理解池化层,卷积层以及全连接层
python·深度学习·tensorflow·tensorflow2
梵得儿SHI6 分钟前
Java 反射机制深度剖析:性能与安全性的那些坑
java·开发语言·安全·反射·动态代理·性能·反射机制
fsnine12 分钟前
Python图形化界面——pyqt5教程
开发语言·python·qt
嵌入式-老费20 分钟前
Easyx图形库应用(和lua结合使用)
开发语言·lua
AsiaLYF21 分钟前
kotlin中MutableStateFlow和MutableSharedFlow的区别是什么?
android·开发语言·kotlin
Asuncion00732 分钟前
Docker核心揭秘:轻量级虚拟化的革命
服务器·开发语言·docker·云原生
扶尔魔ocy1 小时前
python程序打包成win的exe应用(以OCR应用为例)
python·ocr·中文识别
Psycho_MrZhang1 小时前
自定义层和读写文件
pytorch·python·深度学习
深思慎考1 小时前
RabbitMQ 入门:基于 AMQP-CPP 的 C++ 实践指南与二次封装
开发语言·c++·分布式·rabbitmq·api
catchadmin1 小时前
PHP8.5 的新 URI 扩展
开发语言·后端·php