密度估计公式

  1. 极大似然估计:

y = p ( x 1 , x 2 , x 3 , . . . , x n ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 y = p(x_1,x_2,x_3,...,x_n) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} y=p(x1,x2,x3,...,xn)=2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)2

l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 lny = ln p(x_1,x_2,x_3,...,x_n) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} ) =\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} lny=lnp(x1,x2,x3,...,xn)=ln(2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)2)=−nln(2π σ)−i=1∑n2σ2(xi−μ)2

要求y的极限值(将 μ 和 σ \mu 和 \sigma μ和σ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:

∂ ln ⁡ y ∂ μ = − ∑ i = 1 n ( x i − μ ) σ 2 = 0 \frac{\partial \ln y}{\partial \mu} = -\sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} = 0 ∂μ∂lny=−i=1∑nσ2(xi−μ)=0

即: μ = 1 n ∑ i = 1 n ( x i ) \mu = \frac{1}{n}\sum_{i=1}^{n} (x_i) μ=n1∑i=1n(xi)

∂ ln ⁡ y ∂ σ = − n 1 σ + ∑ i = 1 n ( x i − μ ) 2 σ 3 = 0 \frac{\partial \ln y}{\partial \sigma} =-n\frac{1}{\sigma} +\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma ^ 3} = 0 ∂σ∂lny=−nσ1+i=1∑nσ3(xi−μ)2=0

即: σ 2 = ∑ i = 1 n ( x i − μ ) 2 n \sigma^2 = \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n} σ2=∑i=1nn(xi−μ)2

  1. 先验估计:

y = p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 y = p(x_1,x_2,x_3,...,x_n;\theta_0) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0} e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} y=p(x1,x2,x3,...,xn;θ0)=2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)22π σ01e−2σ02(μ0−μ)2

l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 − l n ( 2 π σ 0 ) − ( μ 0 − μ ) 2 2 σ 0 2 lny = ln p(x_1,x_2,x_3,...,x_n;\theta_0) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0}e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} )=\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} -ln(\sqrt{2 \pi} \sigma _0) -\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2} lny=lnp(x1,x2,x3,...,xn;θ0)=ln(2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)22π σ01e−2σ02(μ0−μ)2)=−nln(2π σ)−i=1∑n2σ2(xi−μ)2−ln(2π σ0)−2σ02(μ0−μ)2

要求y的极限值(将 μ 和 σ \mu 和 \sigma μ和σ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:

∂ ln ⁡ y ∂ μ = − ∑ i = 1 n ( x i − μ ) σ 2 − ( μ 0 − μ ) σ 0 2 = 0 \frac{\partial \ln y}{\partial \mu} = -\sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} -\frac{(\mu_0- \mu)}{\sigma_0 ^ 2} = 0 ∂μ∂lny=−i=1∑nσ2(xi−μ)−σ02(μ0−μ)=0

这里要注意的是,贝叶斯估计在 θ 0 \theta_0 θ0处的先验概率的计算方式,此时要将 u 0 和 σ 0 当作先验参数 u_0和\sigma_0当作先验参数 u0和σ0当作先验参数

相关推荐
HSunR1 天前
概率论 期末 笔记
笔记·概率论
2302_796984742 天前
概率论基础知识点公式汇总
概率论
项目申报小狂人2 天前
广义正态分布优化算法(GNDO)Generalized Normal Distribution Optimization
算法·概率论
2302_796984742 天前
概率论基础
概率论
感谢地心引力3 天前
【数据分析】层次贝叶斯
机器学习·数据分析·概率论
Mount2563 天前
【数理统计】极限定理及抽样分布
概率论
勤劳的进取家3 天前
多维高斯分布
人工智能·机器学习·概率论
公众号Codewar原创作者3 天前
R机器学习:朴素贝叶斯算法的理解与实操
人工智能·机器学习·概率论
orion-orion4 天前
概率论沉思录:初等假设检验
人工智能·概率论·科学哲学
Mount2564 天前
【数理统计】参数估计
概率论