密度估计公式

  1. 极大似然估计:

y = p ( x 1 , x 2 , x 3 , . . . , x n ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 y = p(x_1,x_2,x_3,...,x_n) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} y=p(x1,x2,x3,...,xn)=2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)2

l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 lny = ln p(x_1,x_2,x_3,...,x_n) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} ) =\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} lny=lnp(x1,x2,x3,...,xn)=ln(2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)2)=−nln(2π σ)−i=1∑n2σ2(xi−μ)2

要求y的极限值(将 μ 和 σ \mu 和 \sigma μ和σ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:

∂ ln ⁡ y ∂ μ = − ∑ i = 1 n ( x i − μ ) σ 2 = 0 \frac{\partial \ln y}{\partial \mu} = -\sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} = 0 ∂μ∂lny=−i=1∑nσ2(xi−μ)=0

即: μ = 1 n ∑ i = 1 n ( x i ) \mu = \frac{1}{n}\sum_{i=1}^{n} (x_i) μ=n1∑i=1n(xi)

∂ ln ⁡ y ∂ σ = − n 1 σ + ∑ i = 1 n ( x i − μ ) 2 σ 3 = 0 \frac{\partial \ln y}{\partial \sigma} =-n\frac{1}{\sigma} +\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma ^ 3} = 0 ∂σ∂lny=−nσ1+i=1∑nσ3(xi−μ)2=0

即: σ 2 = ∑ i = 1 n ( x i − μ ) 2 n \sigma^2 = \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n} σ2=∑i=1nn(xi−μ)2

  1. 先验估计:

y = p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 y = p(x_1,x_2,x_3,...,x_n;\theta_0) = \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0} e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} y=p(x1,x2,x3,...,xn;θ0)=2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)22π σ01e−2σ02(μ0−μ)2

l n y = l n p ( x 1 , x 2 , x 3 , . . . , x n ; θ 0 ) = l n ( 1 2 π σ e − ( x 1 − μ ) 2 2 σ 2 1 2 π σ e − ( x 2 − μ ) 2 2 σ 2 . . . 1 2 π σ e − ( x n − μ ) 2 2 σ 2 1 2 π σ 0 e − ( μ 0 − μ ) 2 2 σ 0 2 ) = − n l n ( 2 π σ ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 − l n ( 2 π σ 0 ) − ( μ 0 − μ ) 2 2 σ 0 2 lny = ln p(x_1,x_2,x_3,...,x_n;\theta_0) =ln( \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_1-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_2-\mu)^2}{2\sigma ^ 2}}...\frac{1}{\sqrt{2\pi} \sigma} e ^{-\frac{(x_n-\mu)^2}{2\sigma ^ 2}} \frac{1}{\sqrt{2\pi} \sigma_0}e ^{-\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2}} )=\\ -nln(\sqrt{2 \pi} \sigma ) - \sum_{i=1}^{n}\frac{(x_i-\mu)^2}{2\sigma ^ 2} -ln(\sqrt{2 \pi} \sigma _0) -\frac{(\mu_0-\mu)^2}{2\sigma_0 ^ 2} lny=lnp(x1,x2,x3,...,xn;θ0)=ln(2π σ1e−2σ2(x1−μ)22π σ1e−2σ2(x2−μ)2...2π σ1e−2σ2(xn−μ)22π σ01e−2σ02(μ0−μ)2)=−nln(2π σ)−i=1∑n2σ2(xi−μ)2−ln(2π σ0)−2σ02(μ0−μ)2

要求y的极限值(将 μ 和 σ \mu 和 \sigma μ和σ视为变量,x视为常量),只需要对上述等式两边对x求导并令导数为0:

∂ ln ⁡ y ∂ μ = − ∑ i = 1 n ( x i − μ ) σ 2 − ( μ 0 − μ ) σ 0 2 = 0 \frac{\partial \ln y}{\partial \mu} = -\sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma ^ 2} -\frac{(\mu_0- \mu)}{\sigma_0 ^ 2} = 0 ∂μ∂lny=−i=1∑nσ2(xi−μ)−σ02(μ0−μ)=0

这里要注意的是,贝叶斯估计在 θ 0 \theta_0 θ0处的先验概率的计算方式,此时要将 u 0 和 σ 0 当作先验参数 u_0和\sigma_0当作先验参数 u0和σ0当作先验参数

相关推荐
qq_2546744121 小时前
概率论里的特征函数,如何用卷积定理去理解
概率论
让我试试哈1 天前
与机器学习相关的概率论重要概念的介绍和说明
人工智能·机器学习·概率论·强化学习
Leweslyh2 天前
工程数学速记手册(下)
学习·概率论·工程数学
phoenix@Capricornus2 天前
概率密度函数(PDF)&分布函数(CDF)——直方图&累积直方图——直方图规定化的数学基础
图像处理·pdf·概率论
phoenix@Capricornus4 天前
我谈概率论与数理统计的知识体系
概率论
两千连弹5 天前
机器学习 ---朴素贝叶斯
人工智能·机器学习·numpy·概率论·sklearn
Arthur古德曼8 天前
【概率论与数理统计】第三章 多维随机变量及其分布(1)
概率论·分布函数·夏明亮·多维随机变量·二维随机变量·边缘分布
蒟蒻的贤13 天前
概率论考前一天
概率论
ZacharyGz14 天前
互斥与独立在组合数学、概率论、线性代数中的理解
线性代数·概率论
winner888114 天前
深度解析统计学四大分布:Z、卡方、t 与 F 的关联与应用
概率论·假设检验·卡方分布·t分布·f分布·z分布