泊松分布的参数可加性

文章目录

泊松分布的参数可加性

波松分布的参数可加性,若 X ∼ P ( λ 1 ) X \sim P(\lambda_1) X∼P(λ1) 。 Y ∼ P ( λ 2 ) Y \sim P(\lambda_2) Y∼P(λ2) 则, Z = X + Y , Z ∼ P ( λ 1 + λ 2 ) Z = X + Y, Z \sim P(\lambda_1 + \lambda_2) Z=X+Y,Z∼P(λ1+λ2)。对这个的等式进行证明;

1、泊松分布:

若随机变量,满足:
P ( X = k ) = e − λ λ k K ! , k = 0, 1, 2, ...且, λ > 0 P(X = k) = \frac{e^{-\lambda}\lambda^k}{K!}\text{, k = 0, 1, 2, ...} \text{且,}\lambda > 0 P(X=k)=K!e−λλk, k = 0, 1, 2, ...且,λ>0

称,X是服从参数为: λ \lambda λ 的泊松分布。

2、参数可加性的证明:

若, X ∼ λ = λ 1 X \sim \lambda = \lambda_1 X∼λ=λ1 的泊松分布, Y ∼ λ = λ 2 Y \sim \lambda = \lambda_2 Y∼λ=λ2 的泊松分布。且随机变量 Z = X + Y Z = X + Y Z=X+Y,则, Z ∼ λ = λ 1 + λ 2 Z \sim \lambda = \lambda_1 + \lambda_2 Z∼λ=λ1+λ2 的泊松分布。

证明:
F Z ( z ) = P { Z = z } = P { X + Y = z } = ∑ i = 0 z e − λ 1 λ 1 i i ! e − λ 2 λ 2 z − i ( z − i ) ! = 1 z ! ∑ i = 0 z z ! e − λ 1 λ 1 i i ! e − λ 2 λ 2 z − i ( z − i ) ! = e − ( λ 1 + λ 2 ) z ! C z i λ 1 i λ 2 z − i = e − ( λ 1 + λ 2 ) z ! ( λ 1 + λ 2 ) z = P ( λ 1 + λ 2 ) \begin{split} F_Z(z) &= P\{ Z = z \} = P\{ X + Y = z \}\\ &= \sum_{i=0}^{z}\frac{e^{-\lambda_1}\lambda_1^i}{i!}\frac{e^{-\lambda_2}\lambda_2^{z-i}}{(z-i)!}\\ &=\frac{1}{z!}\sum_{i=0}^{z}z!\frac{e^{-\lambda_1}\lambda_1^i}{i!}\frac{e^{-\lambda_2}\lambda_2^{z-i}}{(z-i)!}\\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} C_z^i\lambda_1^i\lambda_2^{z-i} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!}(\lambda_1 + \lambda_2)^z\\ &= P(\lambda_1 + \lambda_2) \end{split} FZ(z)=P{Z=z}=P{X+Y=z}=i=0∑zi!e−λ1λ1i(z−i)!e−λ2λ2z−i=z!1i=0∑zz!i!e−λ1λ1i(z−i)!e−λ2λ2z−i=z!e−(λ1+λ2)Cziλ1iλ2z−i=z!e−(λ1+λ2)(λ1+λ2)z=P(λ1+λ2)

证明结束!

相关推荐
Yeats_Liao18 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
格林威18 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
byzh_rc19 小时前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理
Aurora-Borealis.19 小时前
Day27 机器学习流水线
人工智能·机器学习
黑符石21 小时前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波
JQLvopkk21 小时前
智能AI“学习功能”在程序开发部分的逻辑
人工智能·机器学习·计算机视觉
jiayong231 天前
model.onnx 深度分析报告(第2篇)
人工智能·机器学习·向量数据库·向量模型
张祥6422889041 天前
数理统计基础一
人工智能·机器学习·概率论
悟乙己1 天前
使用TimeGPT进行时间序列预测案例解析
机器学习·大模型·llm·时间序列·预测
云和数据.ChenGuang1 天前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn