泊松分布的参数可加性

文章目录

泊松分布的参数可加性

波松分布的参数可加性,若 X ∼ P ( λ 1 ) X \sim P(\lambda_1) X∼P(λ1) 。 Y ∼ P ( λ 2 ) Y \sim P(\lambda_2) Y∼P(λ2) 则, Z = X + Y , Z ∼ P ( λ 1 + λ 2 ) Z = X + Y, Z \sim P(\lambda_1 + \lambda_2) Z=X+Y,Z∼P(λ1+λ2)。对这个的等式进行证明;

1、泊松分布:

若随机变量,满足:
P ( X = k ) = e − λ λ k K ! , k = 0, 1, 2, ...且, λ > 0 P(X = k) = \frac{e^{-\lambda}\lambda^k}{K!}\text{, k = 0, 1, 2, ...} \text{且,}\lambda > 0 P(X=k)=K!e−λλk, k = 0, 1, 2, ...且,λ>0

称,X是服从参数为: λ \lambda λ 的泊松分布。

2、参数可加性的证明:

若, X ∼ λ = λ 1 X \sim \lambda = \lambda_1 X∼λ=λ1 的泊松分布, Y ∼ λ = λ 2 Y \sim \lambda = \lambda_2 Y∼λ=λ2 的泊松分布。且随机变量 Z = X + Y Z = X + Y Z=X+Y,则, Z ∼ λ = λ 1 + λ 2 Z \sim \lambda = \lambda_1 + \lambda_2 Z∼λ=λ1+λ2 的泊松分布。

证明:
F Z ( z ) = P { Z = z } = P { X + Y = z } = ∑ i = 0 z e − λ 1 λ 1 i i ! e − λ 2 λ 2 z − i ( z − i ) ! = 1 z ! ∑ i = 0 z z ! e − λ 1 λ 1 i i ! e − λ 2 λ 2 z − i ( z − i ) ! = e − ( λ 1 + λ 2 ) z ! C z i λ 1 i λ 2 z − i = e − ( λ 1 + λ 2 ) z ! ( λ 1 + λ 2 ) z = P ( λ 1 + λ 2 ) \begin{split} F_Z(z) &= P\{ Z = z \} = P\{ X + Y = z \}\\ &= \sum_{i=0}^{z}\frac{e^{-\lambda_1}\lambda_1^i}{i!}\frac{e^{-\lambda_2}\lambda_2^{z-i}}{(z-i)!}\\ &=\frac{1}{z!}\sum_{i=0}^{z}z!\frac{e^{-\lambda_1}\lambda_1^i}{i!}\frac{e^{-\lambda_2}\lambda_2^{z-i}}{(z-i)!}\\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} C_z^i\lambda_1^i\lambda_2^{z-i} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!}(\lambda_1 + \lambda_2)^z\\ &= P(\lambda_1 + \lambda_2) \end{split} FZ(z)=P{Z=z}=P{X+Y=z}=i=0∑zi!e−λ1λ1i(z−i)!e−λ2λ2z−i=z!1i=0∑zz!i!e−λ1λ1i(z−i)!e−λ2λ2z−i=z!e−(λ1+λ2)Cziλ1iλ2z−i=z!e−(λ1+λ2)(λ1+λ2)z=P(λ1+λ2)

证明结束!

相关推荐
西西弗Sisyphus2 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
weixin_429630262 小时前
第6章 支持向量机
算法·机器学习·支持向量机
背包客研究2 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
追赶sun3 小时前
讨论矩阵等价、相似的几何含义
线性代数
大大dxy大大3 小时前
机器学习-KNN算法示例
人工智能·算法·机器学习
西西弗Sisyphus4 小时前
线性代数 - 线性方程组的原始解法(高斯消元法)
线性代数·矩阵·线程方程组
程序员大雄学编程4 小时前
用Python来学微积分30-微分方程初步
开发语言·python·线性代数·数学·微积分
机器学习ing.5 小时前
U-Net保姆级教程:从原理到医学细胞分割实战(PyTorch版)!
人工智能·pytorch·python·深度学习·机器学习
HyperAI超神经5 小时前
在线教程丨端侧TTS新SOTA!NeuTTS-Air基于0.5B模型实现3秒音频克隆
人工智能·深度学习·机器学习·音视频·tts·音频克隆·neutts-air