泊松分布的参数可加性

文章目录

泊松分布的参数可加性

波松分布的参数可加性,若 X ∼ P ( λ 1 ) X \sim P(\lambda_1) X∼P(λ1) 。 Y ∼ P ( λ 2 ) Y \sim P(\lambda_2) Y∼P(λ2) 则, Z = X + Y , Z ∼ P ( λ 1 + λ 2 ) Z = X + Y, Z \sim P(\lambda_1 + \lambda_2) Z=X+Y,Z∼P(λ1+λ2)。对这个的等式进行证明;

1、泊松分布:

若随机变量,满足:
P ( X = k ) = e − λ λ k K ! , k = 0, 1, 2, ...且, λ > 0 P(X = k) = \frac{e^{-\lambda}\lambda^k}{K!}\text{, k = 0, 1, 2, ...} \text{且,}\lambda > 0 P(X=k)=K!e−λλk, k = 0, 1, 2, ...且,λ>0

称,X是服从参数为: λ \lambda λ 的泊松分布。

2、参数可加性的证明:

若, X ∼ λ = λ 1 X \sim \lambda = \lambda_1 X∼λ=λ1 的泊松分布, Y ∼ λ = λ 2 Y \sim \lambda = \lambda_2 Y∼λ=λ2 的泊松分布。且随机变量 Z = X + Y Z = X + Y Z=X+Y,则, Z ∼ λ = λ 1 + λ 2 Z \sim \lambda = \lambda_1 + \lambda_2 Z∼λ=λ1+λ2 的泊松分布。

证明:
F Z ( z ) = P { Z = z } = P { X + Y = z } = ∑ i = 0 z e − λ 1 λ 1 i i ! e − λ 2 λ 2 z − i ( z − i ) ! = 1 z ! ∑ i = 0 z z ! e − λ 1 λ 1 i i ! e − λ 2 λ 2 z − i ( z − i ) ! = e − ( λ 1 + λ 2 ) z ! C z i λ 1 i λ 2 z − i = e − ( λ 1 + λ 2 ) z ! ( λ 1 + λ 2 ) z = P ( λ 1 + λ 2 ) \begin{split} F_Z(z) &= P\{ Z = z \} = P\{ X + Y = z \}\\ &= \sum_{i=0}^{z}\frac{e^{-\lambda_1}\lambda_1^i}{i!}\frac{e^{-\lambda_2}\lambda_2^{z-i}}{(z-i)!}\\ &=\frac{1}{z!}\sum_{i=0}^{z}z!\frac{e^{-\lambda_1}\lambda_1^i}{i!}\frac{e^{-\lambda_2}\lambda_2^{z-i}}{(z-i)!}\\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} C_z^i\lambda_1^i\lambda_2^{z-i} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{z!}(\lambda_1 + \lambda_2)^z\\ &= P(\lambda_1 + \lambda_2) \end{split} FZ(z)=P{Z=z}=P{X+Y=z}=i=0∑zi!e−λ1λ1i(z−i)!e−λ2λ2z−i=z!1i=0∑zz!i!e−λ1λ1i(z−i)!e−λ2λ2z−i=z!e−(λ1+λ2)Cziλ1iλ2z−i=z!e−(λ1+λ2)(λ1+λ2)z=P(λ1+λ2)

证明结束!

相关推荐
dazzle12 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
池央12 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
玄同76512 小时前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
B站_计算机毕业设计之家13 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
啊阿狸不会拉杆13 小时前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
铁蛋AI编程实战14 小时前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
张较瘦_14 小时前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
算法狗214 小时前
大模型面试题:大模型的训练和推理中显存和计算量的情况
人工智能·深度学习·机器学习·语言模型
我材不敲代码14 小时前
机器学习入门 04逻辑回归part2——提高逻辑回归模型的召回率
人工智能·机器学习·逻辑回归