LCR 013. 二维区域和检索 - 矩阵不可变(java)

LCR 013. 二维区域和检索 - 矩阵不可变

题目

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回左上角 (row1, col1) 、右下角 (row2, col2) 的子矩阵的元素总和。

示例:

解题思路:

题目求子矩阵元素的和,首先想到的是暴力解法,两个for循环,将矩阵中的元素遍历相加,但是超出了时间限制。

将暴力求和优化:

思路:

创建一个新的矩阵sums,每个元素表示该位置到已知矩阵[0, 0],元素的和,为了减少边界的判断,直接创建比原来矩阵多一行一列的sums的矩阵:

图解:

求sums矩阵

java 复制代码
  this.sums[i][j] = this.sums[i-1][j]+this.sums[i][j-1]-this.sums[i-1][j-1]+matrix[i-1][j-1];

图解:

初始化 sums矩阵后,求子矩阵元素之和:

图解:

最终求解程序:

java 复制代码
class NumMatrix {

    int[][] matrix;

    int[][] sums;
    public NumMatrix(int[][] matrix) {
       this.matrix = matrix;
        this.sums = new int[matrix.length+1][matrix[0].length+1];
        for (int i = 1; i <= matrix.length; i++) {
            for (int j = 1; j <= matrix[0].length; j++) {
               this.sums[i][j] = this.sums[i-1][j]+this.sums[i][j-1]-this.sums[i-1][j-1]+matrix[i-1][j-1];
            }
        }
    }
    public int sumRegion(int row1, int col1, int row2, int col2) {
        return this.sums[row2+1][col2+1]-this.sums[row1][col2+1]-this.sums[row2+1][col1]+this.sums[row1][col1];
    }
}
相关推荐
小白程序员成长日记1 小时前
2025.11.23 力扣每日一题
算法·leetcode·职场和发展
16_one2 小时前
autoDL安装Open-WebUi+Rag本地知识库问答+Function Calling
人工智能·后端·算法
散峰而望3 小时前
C++数组(三)(算法竞赛)
开发语言·c++·算法·github
q***95223 小时前
SpringMVC 请求参数接收
前端·javascript·算法
初级炼丹师(爱说实话版)3 小时前
多进程与多线程的优缺点及适用场景总结
算法
hetao17338373 小时前
2025-11-25~26 hetao1733837的刷题记录
c++·算法
历程里程碑4 小时前
各种排序法大全
c语言·数据结构·笔记·算法·排序算法
少许极端4 小时前
算法奇妙屋(十四)-简单多状态dp问题
算法·动态规划·图解算法·简单多状态dp·打家劫舍问题·买卖股票问题全解
2301_823438024 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机
passxgx5 小时前
11.1 高斯消元法的应用
线性代数·矩阵