R语言dplyr包高效处理数据-补充函数

++前言:++

++已经1年多没有更新博客了,++

++似乎工作后时间会越来越少,获取知识的动力和精力有了变化,平凡的普通人大概就是这样吧。++

dplyr包补充用到的实用函数:

1、函数cur_group_:数据分组组内标记

R 复制代码
#使用常见的R语言内置数据集iris
#可以明确的知道当前数据属于哪个分组
iris %>% 
  group_by(Species) %>% 
  mutate(group_tag=cur_group_id())

# A tibble: 150 x 6
# Groups:   Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species group_tag
          <dbl>       <dbl>        <dbl>       <dbl> <fct>       <int>
 1          5.1         3.5          1.4         0.2 setosa          1
 2          4.9         3            1.4         0.2 setosa          1
 3          4.7         3.2          1.3         0.2 setosa          1

#可以明确的知道分组后数据在原始数据所在的行,相当于索引
iris %>% 
    group_by(Species) %>% 
    mutate(row_tag= cur_group_rows()) 

# A tibble: 150 x 6
# Groups:   Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species row_tag
          <dbl>       <dbl>        <dbl>       <dbl> <fct>     <int>
 1          5.1         3.5          1.4         0.2 setosa        1
 2          4.9         3            1.4         0.2 setosa        2
 3          4.7         3.2          1.3         0.2 setosa        3

#将分组变量以外的数据嵌套起来→相当于dplyr中的group_nest函数
iris %>% 
  group_by(Species) %>% 
  summarise(data_tag = list(cur_data()))

# A tibble: 3 x 2
  Species    data_tag         
  <fct>      <list>           
1 setosa     <tibble [50 x 4]>
2 versicolor <tibble [50 x 4]>
3 virginica  <tibble [50 x 4]>

2、快速统计分组数据count、add_count

R 复制代码
#快速计算分组变量标签的行数
iris %>% count(Species)

     Species  n
1     setosa 50
2 versicolor 50
3  virginica 50

#灵活计算分组变量指定标签值
iris %>% add_count(Species, wt = Petal.Length)

    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species     n
1            5.1         3.5          1.4         0.2     setosa  73.1
2            4.9         3.0          1.4         0.2     setosa  73.1
3            4.7         3.2          1.3         0.2     setosa  73.1
4            4.6         3.1          1.5         0.2     setosa  73.1
5            5.0         3.6          1.4         0.2     setosa  73.1

3、cumall、cumany条件判断为TRUE/FALSE的前后数据过滤

R 复制代码
#计算user_data数据指定条件过滤后按照user_var2排序,再过滤直到第1个user_var3=='y'为TRUE的所有数据
user_data %>% 
  filter(user_var1==x) %>% 
  arrange(user_var2) %>% 
  filter(cumall(!(user_var3=='y'))) %>% 
  summarise(result_tag=max(user_var4))
示例:
iris %>%arrange(Sepal.Width) %>% filter(cumall(!Petal.Length>=5))

  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.0         2.0          3.5         1.0 versicolor
2          6.0         2.2          4.0         1.0 versicolor
3          6.2         2.2          4.5         1.5 versicolor

还没写完!!

相关推荐
纨妙33 分钟前
python打卡day59
开发语言·python
wuxuanok40 分钟前
Web后端开发-请求响应
java·开发语言·笔记·学习
Sally璐璐1 小时前
IPSAN 共享存储详解:架构、优化与落地实践指南
开发语言·php
像风一样的男人@1 小时前
python --货车装厢问题
开发语言·python
Humbunklung1 小时前
Rust枚举:让数据类型告别单调乏味
开发语言·后端·rust
Y1nhl1 小时前
力扣_链表_python版本
开发语言·python·算法·leetcode·链表·职场和发展
OEC小胖胖2 小时前
深入理解 Vue.js 响应式原理及其在 Web 前端开发中的应用
开发语言·前端·javascript·vue.js·web
qq_401700412 小时前
C语言中位运算以及获取低8位和高8位、高低位合并
c语言·开发语言·算法
yanjiaweiya2 小时前
云原生-集群管理
java·开发语言·云原生