【每日一题】ARC158B - Sum-Product Ratio | 数学 | 中等

题目内容

原题链接

给定一个长度为 n n n 的数组,选择三个下标不同元素 x , y , z x,y,z x,y,z,问 x + y + z x y z \frac{x+y+z}{xyz} xyzx+y+z 的最大值和最小值是多少。

数据范围

  • 1 ≤ n ≤ 2 ⋅ 1 0 5 1\leq n\leq 2\cdot 10^5 1≤n≤2⋅105
  • − 1 0 6 ≤ x i ≤ 1 0 6 , x i ≠ 0 -10^6\leq x_i\leq 10^6,x_i\neq 0 −106≤xi≤106,xi=0

题解

考虑以一个元素为自变量。

x + y + z x y z = x + y x y ⋅ 1 z + 1 x y \frac{x+y+z}{xyz}=\frac{x+y}{xy}\cdot \frac{1}{z}+\frac{1}{xy} xyzx+y+z=xyx+y⋅z1+xy1

这里当 x x x 和 y y y 确定时,极值由 z z z 确定。

显然当 z z z 取极值时,该式子取到极值。

对于 x x x 和 y y y 作为自变量时,也是一样的。

所以考虑取到所有的极值,可以知道的是,两个负数的乘积为正数,所以我们需要考虑到绝对值最小和最大的数,对于正数和负数来说都是最小和最大的三个数。这样至多 12 12 12 个数,三重循环考虑极值即可。

时间复杂度: O ( 1 2 3 ) O(12^3) O(123)

代码

cpp 复制代码
/*
    枚举 i 作为三个数的最中间的,则在前缀和后缀中各找一个数即可
*/

#include <bits/stdc++.h>
using namespace std;

const int MOD = 1e9 + 7;

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n;
    cin >> n;

    vector<int> pos, neg;
    for (int i = 0; i < n; ++i) {
        int x; cin >> x;
        if (x > 0) pos.push_back(x);
        else neg.push_back(x);
    }

    sort(pos.begin(), pos.end());
    sort(neg.begin(), neg.end());

    vector<int> arr;
    int m = min(int(pos.size()), 3);
    for (int i = 0; i < m; ++i) arr.push_back(pos[i]);
    m = max(m, int(pos.size()) - 3);
    for (int i = m; i < pos.size(); ++i) arr.push_back(pos[i]);

    m = min(int(neg.size()), 3);
    for (int i = 0; i < m; ++i) arr.push_back(neg[i]);
    m = max(m, int(neg.size()) - 3);
    for (int i = m; i < neg.size(); ++i) arr.push_back(neg[i]);

    double max_ans = 1.0 * (arr[0] + arr[1] + arr[2]) / (1ll * arr[0] * arr[1] * arr[2]);
    double min_ans = max_ans;
    for (int i = 0; i < arr.size(); ++i)
        for (int j = i + 1; j < arr.size(); ++j)
            for (int k = j + 1; k < arr.size(); ++k) {
                double v = 1.0 * (arr[i] + arr[j] + arr[k]) / (1ll * arr[i] * arr[j] * arr[k]);
                max_ans = max(max_ans, v);
                min_ans = min(min_ans, v);
            }

    cout << setprecision(15) << min_ans << "\n" << max_ans << "\n";

    return 0;
}
相关推荐
√尖尖角↑30 分钟前
力扣——【1991. 找到数组的中间位置】
算法·蓝桥杯
Allen Wurlitzer31 分钟前
算法刷题记录——LeetCode篇(1.8) [第71~80题](持续更新)
算法·leetcode·职场和发展
百锦再2 小时前
五种常用的web加密算法
前端·算法·前端框架·web·加密·机密
碳基学AI3 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
独家回忆3644 小时前
每日算法-250410
算法
袖清暮雨4 小时前
Python刷题笔记
笔记·python·算法
风掣长空5 小时前
八大排序——c++版
数据结构·算法·排序算法
流星白龙6 小时前
【C++算法】50.分治_归并_翻转对
c++·算法
Java致死7 小时前
费马小定理
算法·费马小定理
不吃元西7 小时前
leetcode 74. 搜索二维矩阵
算法·leetcode·矩阵