论文精读ResNet: Deep Residual Learning for Image Recognition

1 基础背景

论文链接:https://arxiv.org/abs/1512.03385

Github链接:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

知乎讲解:ResNet论文笔记及代码剖析

2 Motivation

对于深度神经网络来说,深度对于模型性能至关重要。网络层数越深:

(1)越容易导致梯度消失或梯度爆炸 gradient vanishing/exploding;

(2)越容易出现性能恶化degradation:准确率达到峰值后迅速下降。

3 解决方法

把输入直接加到输出上,即shortcut connection。残差网络的意思是输出-输入的那部分网络模型。

对于神经网络来说,它对于相同映射identity mapping之外的扰动更容易学习,而不是identity mapping本身。相同映射就是【输入=输出】。

如果输入输出维度不同,可以采用zero-padding补零/projection映射,将其维度改变。

4 结论

shortcut connection没有引入新的参数,也没有额外增加计算复杂度。

在ImageNet中,不shortcut connection的网络(论文中叫plain network)34层的训练误差高于18层的,而残差版的34层低于18层。

验证误差同样很小,说明泛化能力较强。

残差网络初期收敛更快,最终收敛效果更好。

对于层数非常深(>50)的网络,可以采用瓶颈bottleneck模型,使用卷积将其维度先降低,提取关键特征,再升高,这样可以有效降低算力需求,由此可以诞生101层,152层的网络,其算力需求仍低于VGG。(具体为什么是101/152,作者并没有说明,李沐分析可能是调试调出来)

projection引入了新的参数,不适用于瓶颈模型,使用identity mapping更好。

5 知识补充

top1 error

将模型输出中最大概率的结果作为最终分类结果,计算得到的错误率,该指标衡量了模型的准确程度,同理还有top5 error;

相关推荐
机器学习之心6 分钟前
金融时间序列预测全流程框架:从SHAP特征选择到智能算法优化深度学习预测模型,核心三章实验已完成,尚未发表,期待有缘人!
人工智能·深度学习·金融
CoderJia程序员甲7 分钟前
GitHub 热榜项目 - 日榜(2026-02-01)
人工智能·ai·大模型·github·ai教程
渡我白衣10 分钟前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥15 分钟前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
Yeats_Liao28 分钟前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
听麟34 分钟前
HarmonyOS 6.0+ PC端智能监控助手开发实战:摄像头联动与异常行为识别落地
人工智能·深度学习·华为·harmonyos
薛定谔的猫19829 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮9 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
玉梅小洋9 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具