EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

本文是LLM系列文章,针对《EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models》的翻译。

EasyEdit:一个易于使用的大型语言模型知识编辑框架

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 设计和实现](#3 设计和实现)
  • [4 评估](#4 评估)
  • [5 实验](#5 实验)
  • [6 结论和未来工作](#6 结论和未来工作)

摘要

大型语言模型(LLM)通常存在知识截断或谬论问题,这意味着它们不知道看不见的事件,或者由于过时/嘈杂的数据而生成具有错误事实的文本。为此,出现了许多LLM的知识编辑方法------旨在巧妙地注入/编辑更新的知识或调整不期望的行为,同时最大限度地减少对无关输入的影响。然而,由于各种知识编辑方法之间的显著差异和任务设置的差异,社区没有可用的标准实施框架,这阻碍了从业者将知识编辑应用于应用程序。为了解决这些问题,我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架。它支持各种前沿的知识编辑方法,可以很容易地应用于许多著名的LLM,如T5、GPT-J、LlaMA等。经验上,我们用EASYEDIT报告了LlaMA-2的知识编辑结果,表明知识编辑在可靠性和通用性方面超越了传统的微调。我们已经在GitHub上发布了源代码,以及Google Colab教程和全面的文档,供初学者入门。此外,我们还提供了一个用于实时知识编辑的在线系统和一个演示视频。

1 引言

2 背景

3 设计和实现

4 评估

5 实验

6 结论和未来工作

我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架,它支持许多尖端方法和各种LLM。以可控和有针对性的方式编辑和操纵LLM的能力,可能为知识增强开辟新的可能性和跨各种自然语言处理任务的适应。未来,我们将继续将先进的编辑技术、创新功能(如编辑个性)和新的编辑目标(如多模态LLM的知识编辑)整合到EASYEDIT中,旨在促进NLP社区的进一步研究和激发新思想。

相关推荐
qq_12498707534 分钟前
基于协同过滤算法的在线教育资源推荐平台的设计与实现(源码+论文+部署+安装)
java·大数据·人工智能·spring boot·spring·毕业设计
万俟淋曦5 分钟前
【论文速递】2025年第38周(Sep-14-20)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·大模型·论文·具身智能
一水鉴天10 分钟前
整体设计 定稿 之7 共享给定表格文档的分析(豆包助手)
人工智能·架构
C嘎嘎嵌入式开发20 分钟前
NLP 入门:从原理到实战的个人经验总结
人工智能·python·自然语言处理·nlp
水如烟30 分钟前
孤能子视角:人工智能的“计算博弈“––“标量“即“矢量“
人工智能
Hugging Face43 分钟前
Codex 正在推动开源 AI 模型的训练与发布
人工智能
程途拾光15844 分钟前
发展中国家的AI弯道超车:医疗AI的低成本本土化之路
大数据·人工智能
vi121231 小时前
土壤与水分遥感反演技术综述:原理、方法与应用
人工智能·算法·无人机
我不是QI1 小时前
周志华《机器学习—西瓜书》八
人工智能·机器学习
shenzhenNBA1 小时前
python如何调用AI之deepseek的API接口?
人工智能·python·deepseek·调用deepseek api