EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

本文是LLM系列文章,针对《EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models》的翻译。

EasyEdit:一个易于使用的大型语言模型知识编辑框架

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 设计和实现](#3 设计和实现)
  • [4 评估](#4 评估)
  • [5 实验](#5 实验)
  • [6 结论和未来工作](#6 结论和未来工作)

摘要

大型语言模型(LLM)通常存在知识截断或谬论问题,这意味着它们不知道看不见的事件,或者由于过时/嘈杂的数据而生成具有错误事实的文本。为此,出现了许多LLM的知识编辑方法------旨在巧妙地注入/编辑更新的知识或调整不期望的行为,同时最大限度地减少对无关输入的影响。然而,由于各种知识编辑方法之间的显著差异和任务设置的差异,社区没有可用的标准实施框架,这阻碍了从业者将知识编辑应用于应用程序。为了解决这些问题,我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架。它支持各种前沿的知识编辑方法,可以很容易地应用于许多著名的LLM,如T5、GPT-J、LlaMA等。经验上,我们用EASYEDIT报告了LlaMA-2的知识编辑结果,表明知识编辑在可靠性和通用性方面超越了传统的微调。我们已经在GitHub上发布了源代码,以及Google Colab教程和全面的文档,供初学者入门。此外,我们还提供了一个用于实时知识编辑的在线系统和一个演示视频。

1 引言

2 背景

3 设计和实现

4 评估

5 实验

6 结论和未来工作

我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架,它支持许多尖端方法和各种LLM。以可控和有针对性的方式编辑和操纵LLM的能力,可能为知识增强开辟新的可能性和跨各种自然语言处理任务的适应。未来,我们将继续将先进的编辑技术、创新功能(如编辑个性)和新的编辑目标(如多模态LLM的知识编辑)整合到EASYEDIT中,旨在促进NLP社区的进一步研究和激发新思想。

相关推荐
ujainu4 分钟前
CANN仓库中的AIGC多模态统一抽象工程:昇腾AI软件栈如何用一套接口驾驭图文音视
人工智能·aigc
AC赳赳老秦9 分钟前
代码生成超越 GPT-4:DeepSeek-V4 编程任务实战与 2026 开发者效率提升指南
数据库·数据仓库·人工智能·科技·rabbitmq·memcache·deepseek
液态不合群11 分钟前
推荐算法中的位置消偏,如何解决?
人工智能·机器学习·推荐算法
饭饭大王66615 分钟前
当 AI 系统开始“自省”——在 `ops-transformer` 中嵌入元认知能力
人工智能·深度学习·transformer
ujainu16 分钟前
CANN仓库中的AIGC可移植性工程:昇腾AI软件栈如何实现“一次开发,多端部署”的跨生态兼容
人工智能·aigc
初恋叫萱萱17 分钟前
CANN 生态实战指南:从零构建一个高性能边缘 AI 应用的完整流程
人工智能
Lethehong20 分钟前
CANN ops-nn仓库深度解读:AIGC时代的神经网络算子优化实践
人工智能·神经网络·aigc
开开心心就好22 分钟前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
TechWJ22 分钟前
CANN ops-nn神经网络算子库技术剖析:NPU加速的基石
人工智能·深度学习·神经网络·cann·ops-nn
凌杰23 分钟前
AI 学习笔记:LLM 的部署与测试
人工智能