EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

本文是LLM系列文章,针对《EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models》的翻译。

EasyEdit:一个易于使用的大型语言模型知识编辑框架

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 设计和实现](#3 设计和实现)
  • [4 评估](#4 评估)
  • [5 实验](#5 实验)
  • [6 结论和未来工作](#6 结论和未来工作)

摘要

大型语言模型(LLM)通常存在知识截断或谬论问题,这意味着它们不知道看不见的事件,或者由于过时/嘈杂的数据而生成具有错误事实的文本。为此,出现了许多LLM的知识编辑方法------旨在巧妙地注入/编辑更新的知识或调整不期望的行为,同时最大限度地减少对无关输入的影响。然而,由于各种知识编辑方法之间的显著差异和任务设置的差异,社区没有可用的标准实施框架,这阻碍了从业者将知识编辑应用于应用程序。为了解决这些问题,我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架。它支持各种前沿的知识编辑方法,可以很容易地应用于许多著名的LLM,如T5、GPT-J、LlaMA等。经验上,我们用EASYEDIT报告了LlaMA-2的知识编辑结果,表明知识编辑在可靠性和通用性方面超越了传统的微调。我们已经在GitHub上发布了源代码,以及Google Colab教程和全面的文档,供初学者入门。此外,我们还提供了一个用于实时知识编辑的在线系统和一个演示视频。

1 引言

2 背景

3 设计和实现

4 评估

5 实验

6 结论和未来工作

我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架,它支持许多尖端方法和各种LLM。以可控和有针对性的方式编辑和操纵LLM的能力,可能为知识增强开辟新的可能性和跨各种自然语言处理任务的适应。未来,我们将继续将先进的编辑技术、创新功能(如编辑个性)和新的编辑目标(如多模态LLM的知识编辑)整合到EASYEDIT中,旨在促进NLP社区的进一步研究和激发新思想。

相关推荐
噜~噜~噜~1 分钟前
损失曲线(loss surface)的个人理解
人工智能·深度学习·持续学习·任务边界感知·损失曲线
Dev7z3 分钟前
基于深度学习的泳池溺水行为检测算法设计
人工智能·深度学习·算法
无我19875 分钟前
靠谱的厌氧池清淤哪家妙
大数据·人工智能·python
Pith_5 分钟前
模式识别与机器学习复习笔记(中)
人工智能·笔记·机器学习
WZGL12307 分钟前
破解养老痛点:2026智慧健康养老布局的核心方向与实施路径
大数据·人工智能·物联网
檐下翻书1737 分钟前
在线自定义跨职能流程图工具 PC免费
大数据·人工智能·架构·html·流程图·论文笔记
视***间7 分钟前
突破视觉边界,重构工业安全防线——视程空间VPP SC6N0-IR全景红外摄像系统技术解析与实践赋能
大数据·人工智能·边缘计算·视程空间·ai算力开发板·全景红外相机·air
广凌股份(广凌科技)7 分钟前
2026智慧校园建设方案选型
人工智能·智慧校园
合方圆~小文7 分钟前
三目智能监控新标杆
数据库·人工智能·模块测试
视***间10 分钟前
视程空间智慧医疗:以空间感知重构精准医疗新范式
大数据·人工智能·边缘计算·智慧医疗·ai算力开发板