EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

本文是LLM系列文章,针对《EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models》的翻译。

EasyEdit:一个易于使用的大型语言模型知识编辑框架

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 设计和实现](#3 设计和实现)
  • [4 评估](#4 评估)
  • [5 实验](#5 实验)
  • [6 结论和未来工作](#6 结论和未来工作)

摘要

大型语言模型(LLM)通常存在知识截断或谬论问题,这意味着它们不知道看不见的事件,或者由于过时/嘈杂的数据而生成具有错误事实的文本。为此,出现了许多LLM的知识编辑方法------旨在巧妙地注入/编辑更新的知识或调整不期望的行为,同时最大限度地减少对无关输入的影响。然而,由于各种知识编辑方法之间的显著差异和任务设置的差异,社区没有可用的标准实施框架,这阻碍了从业者将知识编辑应用于应用程序。为了解决这些问题,我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架。它支持各种前沿的知识编辑方法,可以很容易地应用于许多著名的LLM,如T5、GPT-J、LlaMA等。经验上,我们用EASYEDIT报告了LlaMA-2的知识编辑结果,表明知识编辑在可靠性和通用性方面超越了传统的微调。我们已经在GitHub上发布了源代码,以及Google Colab教程和全面的文档,供初学者入门。此外,我们还提供了一个用于实时知识编辑的在线系统和一个演示视频。

1 引言

2 背景

3 设计和实现

4 评估

5 实验

6 结论和未来工作

我们提出了EASYEDIT,这是一个易于使用的LLM知识编辑框架,它支持许多尖端方法和各种LLM。以可控和有针对性的方式编辑和操纵LLM的能力,可能为知识增强开辟新的可能性和跨各种自然语言处理任务的适应。未来,我们将继续将先进的编辑技术、创新功能(如编辑个性)和新的编辑目标(如多模态LLM的知识编辑)整合到EASYEDIT中,旨在促进NLP社区的进一步研究和激发新思想。

相关推荐
望获linux6 分钟前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
Dev7z16 分钟前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
万俟淋曦21 分钟前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯30 分钟前
PyTorch DataLoader 高级用法
人工智能·pytorch·python
每月一号准时摆烂31 分钟前
PS基本教学(三)——像素与分辨率的关系以及图片的格式
人工智能·计算机视觉
song150265372981 小时前
全自动视觉检测设备
人工智能·计算机视觉·视觉检测
2501_906519671 小时前
大语言模型的幻觉问题:机理、评估与抑制路径探析
人工智能
ZKNOW甄知科技1 小时前
客户案例 | 派克新材x甄知科技,构建全场景智能IT运维体系
大数据·运维·人工智能·科技·低代码·微服务·制造
视觉语言导航1 小时前
CoRL-2025 | SocialNav-SUB:用于社交机器人导航场景理解的视觉语言模型基准测试
人工智能·机器人·具身智能
余俊晖2 小时前
多模态文档理解视觉token剪枝思路
人工智能·算法·剪枝·多模态