C# OpenCvSharp Yolov8 Cls 图像分类

效果

项目

代码

复制代码
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace OpenCvSharp_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        ClasResult result_pro;
        Mat result_mat;
        Mat result_image;
        Mat result_mat_to_float;

        Net opencv_net;
        Mat BN_image;

        float[] result_array;

        int max_image_length;
        Mat max_image;
        Rect roi;

        KeyValuePair<string, float> result_cls;
        StringBuilder sb = new StringBuilder();

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = startupPath + "\\yolov8n-cls.onnx";
            classer_path = startupPath + "\\yolov8-cls-lable.txt";

            result_pro = new ClasResult(classer_path);

            //初始化网络类,读取本地模型
            opencv_net = CvDnn.ReadNetFromOnnx(model_path);

            result_array = new float[1000];
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            //缩放图片
            max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            //数据归一化处理
            BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            dt1 = DateTime.Now;
            //模型推理,读取推理结果
            result_mat = opencv_net.Forward();
            dt2 = DateTime.Now;

            //将推理结果转为float数据类型
            result_mat_to_float = new Mat(1, 1000, MatType.CV_32F, result_mat.Data);

            //将数据读取到数组中
            result_mat_to_float.GetArray<float>(out result_array);

            result_cls = result_pro.process_result(result_array);

            result_image = result_pro.draw_result(result_cls, image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                sb.Clear();
                sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
                sb.AppendLine("------------------------------");

                sb.AppendLine(string.Format("{0}:{1}"
                    , result_cls.Key
                    , result_cls.Value.ToString("0.00")));

                textBox1.Text = sb.ToString();
            }
            else
            {
                textBox1.Text = "无信息";
            }

        }
    }
}

Demo下载

相关推荐
要努力啊啊啊12 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
加油吧zkf18 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
要努力啊啊啊2 天前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx3 天前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
学技术的大胜嗷3 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
一花·一叶4 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币4 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580084 天前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter14 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
model200514 天前
yolov11转ncnn
yolo·ncnn