一百八十五、大数据离线数仓完整流程——步骤四、在Hive的DWD层建动态分区表并动态加载数据

一、目的

经过6个月的奋斗,项目的离线数仓部分终于可以上线了,因此整理一下离线数仓的整个流程,既是大家提供一个案例经验,也是对自己近半年的工作进行一个总结。

二、数仓实施步骤

(四)步骤四、在Hive的DWD层建动态分区表并动态加载数据

1、Hive的DWD层建库建表语句

--如果不存在则创建hurys_dc_dwd数据库

create database if not exists hurys_dc_dwd;

--使用hurys_dc_dwd数据库

use hurys_dc_dwd;

--1.转向比数据内部表------动态分区 dwd_turnratio

create table if not exists dwd_turnratio(

device_no string comment '设备编号(点位)',

create_time timestamp comment '创建时间',

volume_sum int comment '指定时间段内通过路口的车辆总数',

volume_left int comment '指定时间段内通过路口的左转车辆总数',

volume_straight int comment '指定时间段内通过路口的直行车辆总数',

volume_right int comment '指定时间段内通过路口的右转车辆总数',

volume_turn int comment '指定时间段内通过路口的掉头车辆总数'

)

comment '转向比数据表------动态分区'

partitioned by (day string) --分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。

stored as orc --表存储数据格式为orc

;

2、海豚执行DWD层建表语句工作流

对于刚部署的服务器,由于Hive没有建库建表、而且手动建表效率低,因此通过海豚调度器直接执行建库建表的.sql文件

(1)海豚的资源中心加建库建表的SQL文件
(2)海豚配置DWD层建表语句的工作流(不需要定时,一次就行)

3、海豚配置DWD层每日动态加载数据的工作流(指定分区名)

(1)海豚配置DWD层每日动态加载数据的工作流(需要定时,每日一次)

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dwd;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table dwd_evaluation partition(day='$yesdate')

select device_no,

cycle,

lane_num,

create_time,

lane_no,

volume,

queue_len_max,

sample_num,

stop_avg,

delay_avg,

stop_rate,

travel_dist,

travel_time_avg

from hurys_dc_ods.ods_evaluation

where volume is not null and date(create_time)= '$yesdate'

group by device_no, cycle, lane_num, create_time, lane_no,

volume, queue_len_max, sample_num, stop_avg, delay_avg, stop_rate, travel_dist, travel_time_avg

"

(2)工作流定时任务设置(注意与其他工作流的时间间隔)
(3)注意点
3.3.1 动态加载数据的SQL需要指定分区名day='$yesdate',只加载前一天的数据

剩余数仓部分,待续!

相关推荐
智能相对论2 分钟前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
焦耳热科技前沿1 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
min1811234562 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
武子康2 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
数据智研3 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
TDengine (老段)4 小时前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
亚古数据5 小时前
亚古数据:查询斯里兰卡公司可以获取什么文件和信息?
大数据·亚古数据·斯里兰卡公司查询
WLJT1231231235 小时前
守护自然与滋养民生的绿色之路
大数据·安全
min1811234565 小时前
PC端零基础跨职能流程图制作教程
大数据·人工智能·信息可视化·架构·流程图
静听松涛1335 小时前
中文PC端多人协作泳道图制作平台
大数据·论文阅读·人工智能·搜索引擎·架构·流程图·软件工程