一百八十六、大数据离线数仓完整流程——步骤五、在Hive的DWS层建动态分区表并动态加载数据

一、目的

经过6个月的奋斗,项目的离线数仓部分终于可以上线了,因此整理一下离线数仓的整个流程,既是大家提供一个案例经验,也是对自己近半年的工作进行一个总结。

二、数仓实施步骤

(五)步骤五、在Hive的DWS层建动态分区表并动态加载数据

1、Hive的DWS层建库建表语句

--如果不存在则创建hurys_dc_dws数据库

create database if not exists hurys_dc_dws;

--使用hurys_dc_dws数据库

use hurys_dc_dws;

--1.1、转向比数据内部表------动态分区------转向流量------5分钟周期 dws_turnratio_volume_5min

create table if not exists dws_turnratio_volume_5min(

device_no string comment '设备编号',

create_time timestamp comment '创建时间',

start_time timestamp comment '开始时间',

name string comment '场景',

direction string comment '雷达朝向',

volume_sum int comment '指定时间段内通过路口的车辆总数',

volume_left int comment '指定时间段内通过路口的左转车辆总数',

volume_straight int comment '指定时间段内通过路口的直行车辆总数',

volume_right int comment '指定时间段内通过路口的右转车辆总数',

volume_turn int comment '指定时间段内通过路口的掉头车辆总数'

)

comment '转向比数据表------动态分区------5分钟周期'

partitioned by (day string) --分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。

stored as orc --表存储数据格式为orc

;

2、海豚执行DWS层建表语句工作流

对于刚部署的服务器,由于Hive没有建库建表、而且手动建表效率低,因此通过海豚调度器直接执行建库建表的.sql文件

(1)海豚的资源中心加建库建表的SQL文件
(2)海豚配置DWS层建表语句的工作流(不需要定时,一次就行)

3、海豚配置DWS层每日动态加载数据的工作流(指定分区名)

(1)海豚配置DWS层每日动态加载数据的工作流(需要定时,每日一次)

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dws;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table dws_evaluation_1hour partition(day='$yesdate')

select

dwd_ev.device_no,

lane_no,

cycle,

create_time,

concat(substr(create_time, 1, 14), '00:00') start_time,

dwd_te.name,

dwd_rc.direction,

dwd_rl.lane_direction,

dwd_ev.volume,

queue_len_max,

sample_num,

stop_avg,

delay_avg,

stop_rate,

travel_dist,

travel_time_avg

from hurys_dc_dwd.dwd_evaluation as dwd_ev

right join hurys_dc_dwd.dwd_radar_lane as dwd_rl

on dwd_rl.device_no=dwd_ev.device_no and dwd_rl.lane_num=dwd_ev.lane_no

right join hurys_dc_dwd.dwd_device_team as dwd_dt

on dwd_dt.device_no=dwd_ev.device_no

right join hurys_dc_dwd.dwd_team as dwd_te

on dwd_te.id = dwd_dt.team_id

right join hurys_dc_dwd.dwd_radar_config as dwd_rc

on dwd_rc.device_no=dwd_ev.device_no

where dwd_ev.create_time is not null and day= '$yesdate'

group by dwd_ev.device_no, lane_no, cycle, create_time, dwd_te.name, dwd_rc.direction, dwd_rl.lane_direction, dwd_ev.volume, queue_len_max, sample_num, stop_avg, delay_avg, stop_rate, travel_dist, travel_time_avg

"

(2)工作流定时任务设置(注意与其他工作流的时间间隔)
(3)注意点
3.3.1 动态加载数据的SQL需要指定分区名day='$yesdate',只加载前一天的数据

剩余数仓部分,待续!

相关推荐
爱思德学术4 分钟前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现
云淡风轻~~2 小时前
构建和部署Spark、Hadoop与Zeppelin集成环境
大数据·hadoop·spark
IT研究室2 小时前
大数据毕业设计选题推荐-基于大数据的人体体能活动能量消耗数据分析与可视化系统-大数据-Spark-Hadoop-Bigdata
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
元基时代2 小时前
视频图文矩阵发布系统企业
大数据·人工智能·矩阵
IT研究室3 小时前
大数据毕业设计选题推荐-基于大数据的人类健康生活方式数据分析与可视化系统-大数据-Spark-Hadoop-Bigdata
大数据·生活·课程设计
武子康4 小时前
大数据-122 - Flink Watermark 全面解析:事件时间窗口、乱序处理与迟到数据完整指南
大数据·后端·flink
大叔_爱编程5 小时前
基于Python的交通数据分析应用-hadoop+django
hadoop·python·django·毕业设计·源码·课程设计·交通数据分析
九河云5 小时前
在云计算环境中实施有效的数据安全策略
大数据·网络·数据库·云计算
Brianna Home6 小时前
从“码农”到“导演”:AI结对编程如何重塑软件工程范式
大数据·人工智能·深度学习·自然语言处理·chatgpt
云飞云共享云桌面6 小时前
SolidWorks服务器多人使用方案
大数据·运维·服务器·前端·网络·电脑·制造