YOLOv5如何训练自己的数据集(生活垃圾数据集为例)

文章目录

前言

本文主要介绍如何利用YOLOv5训练自己的数据集

1、数据标注说明

以生活垃圾数据集为例子

  1. 生活垃圾数据集(YOLO版)
  2. 点击这里直接下载本文生活垃圾数据集

生活垃圾数据集组成:

python 复制代码
【有害垃圾】:电池(1 号、2 号、5 号)、过期药品或内包装等;
【可回收垃圾】:易拉罐、小号矿泉水瓶;
【厨余垃圾】:小土豆、切过的白萝卜、胡萝卜,尺寸为电池大小;
【其他垃圾】:瓷片、鹅卵石(小土豆大小)、砖块等。

YOLO数据有三个要点

  1. images,存放图片
  2. labes,对应Images图片的标签
  3. data_txt, 划分images图片的数据集,形成三个txt

文件结构:

python 复制代码
----data\
    |----classes.txt  # 标签种类
    |----data-txt\  # 数据集文件集合
    |    |----test.txt
    |    |----train.txt
    |    |----val.txt
    |----images\ # 数据集图片
    |    |----test\
    |    |    |----fimg_23.jpg
    |    |    |----fimg_38.jpg
    |    |    |----.....
    |    |----train\
    |    |    |----fimg_1.jpg
    |    |    |----fimg_2.jpg
    |    |    |----.....
    |    |----val\
    |    |    |----fimg_4.jpg
    |    |    |----fimg_6.jpg
    |    |    |----.....
    |----labels\  # yolo标签
    |    |----test\
    |    |    |----fimg_23.txt
    |    |    |----fimg_38.txt
    |    |    |----.....
    |    |----train\
    |    |    |----fimg_1.txt
    |    |    |----fimg_2.txt
    |    |    |----.....
    |    |----val\
    |    |    |----fimg_4.txt
    |    |    |----fimg_6.txt
    |    |    |----.....
    |----waste-classification.yaml  # 数据集配置文件

2、定义自己模型文件

1、定义yolov5网络模型文件

如 models/yolov5l.yaml

yaml 复制代码
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes  类别,这里的类别一共四种
depth_multiple: 0.33  # model depth multiple ,模型宽度
width_multiple: 0.50  # layer channel multiple ,通道数
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2、在data/目标下,定义自己数据集的配置文件

如data/waste-classification.yaml

yaml 复制代码
train: data/data-txt/train.txt
val: data/data-txt/val.txt
test: data/data-txt/test.txt

# Classes
nc: 4 # number of classes
names: ['recyclable waste', 'hazardous waste','kitchen waste','other waste']  # class names

3、训练模型

1、激活python环境

python 复制代码
conda activate reid-pytorch  # 这里我是激活reid-pytorch环境

2、在服务器上训练自己的模型

python 复制代码
# 注意,这里是linux服务器上训练命令
# nohup 是后台运行,--batch-size 每次送入的图片数, --epochs 训练多少轮  --cfg 模型配置  --data 数据集配置
#  --weights 以哪个权重训练  --device 在那个显卡上训练(这里一共有四张显卡)  > 重定向,将训练的结果输出到myout.file,方便查看
nohup python train.py --batch-size 16 --epochs 200 --cfg models/yolov5s.yaml --data data/waste-classification.yaml --weights weights/yolov5s.pt --device 0,1,2,3 > myout.file 2>&1 &
python 复制代码
# 如果是本地电脑上训练,直接在pycharm的train.py添加上述参数,直接训练
--batch-size 16 --epochs 200
--cfg models/yolov5s.yaml
--data data/waste-classification.yaml 
--weights weights/yolov5s.pt
--device 0  # 采用显卡0进行训练


查看自己电脑显卡情况

参考文献

  1. YOLOv5s网络模型讲解(一看就会)
  2. 生活垃圾数据集(YOLO版)
  3. 双向控制舵机(树莓派版)
相关推荐
非优秀程序员2 小时前
人工智能时代,如何让你的网站更好被大模型收录,获得新的自然流量并成为互联网的信息来源
人工智能·机器学习·架构
Y1nhl12 小时前
搜广推校招面经三十八
pytorch·算法·机器学习·推荐算法·搜索算法
羊小猪~~12 小时前
深度学习基础--CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch)
网络·人工智能·pytorch·深度学习·神经网络·机器学习·cnn
起个破名想半天了12 小时前
一招解决Pytorch GPU版本安装慢的问题
pytorch·python·深度学习
紫雾凌寒13 小时前
计算机视觉|3D卷积网络VoxelNet:点云检测的革新力量
网络·人工智能·深度学习·计算机视觉·3d·3d目标检测·voxelnet
陈辛chenxin13 小时前
【论文带读(3)】《Real-Time Flying Object Detection with YOLOv8》带读笔记翻译
人工智能·笔记·yolo·目标检测·计算机视觉
安逸sgr13 小时前
图像生成-ICCV2019-SinGAN: Learning a Generative Model from a Single Natural Image
图像处理·人工智能·pytorch·深度学习·神经网络·生成对抗网络·计算机视觉
reduceanxiety13 小时前
李宏毅深度学习--如何做到鱼与熊掌兼得
人工智能·深度学习
智能汽车人13 小时前
自动驾驶---不依赖地图的大模型轨迹预测
人工智能·机器学习·自动驾驶
yuweififi14 小时前
自动驾驶中的IPM2ego_matrix
人工智能·机器学习·自动驾驶