机器学习小白理解之一元线性回归

关于机器学习,百度上一搜一大摞,总之各有各的优劣,有的非常专业,有的看的似懂非懂。我作为一名机器学习的门外汉,为了看懂这些公式和名词真的花了不少时间,还因此去着重学了高数。

不过如果不去看公式,而只去理解机器学习要干的事情,那么就比较容易看懂如何去理解那些公式和专有名词了,下面我以我的一些拙见来理解一下机器学习(全程无公式,只有理解)。

一、假设一个场景

有好多好多珠子要用签子一口气串起来,但不能动珠子,你只能选一个趁手的签子,能尽量多的把珠子串起来,你会选哪个?(插签子的动作必须要帅,只能如下动图的插法)

答案

很显然,我们要选又细又长的签子去插这些珠子,因为这些珠子很明显排的还算整齐,用直直的签子很容易多插到几个。

而这个过程就是需要查看数据样本来确定函数拟合大概是一个怎么样的函数,我们这里就是一个简单的线性函数。

二、插签子

接下来我们就是进行插签子的环节,如果插签子的人很笨,他第一下插下去变成了下面这样:

这也太笨了吧,差那么多,嗯,这就是欠拟合,差的太大了,完全插不到一个。

第二次尝试,插成了这个样子:

嗯,比第一次好多了,再来一次:

很好,越来越接近了,再来一次:

完美,这次可以说插的非常漂亮,所以这个插的过程,有人叫它梯度下降,就是为了让签子插过足够多的珠子。

三、大力出奇迹

如果有人大力得很,签子柔韧性又好,就插成了下面这样:

插得很好,签子把每个珠子的圆心都过了,但签子歪了,这就叫过拟合。

四、插签子的角度

在寻找插签子的角度时,我们是通过签子与每个珠子的距离来做判断的:

每一次签子和珠子的距离越来越近,是靠肉眼去看的,换到公式中就是我们的代价函数(Cost Function)。

五、总结

以上就是一元线性回归的理解,作为机器学习的入门,一元线性回归是最基础也最基本的。当然,文中的签子只是用来串现有的珠子,而真正的线性回归使用是为了预测结果,上文的场景只是为了表现一元线性回归的思路。

接下来有机会再讨论其他机器学习的内容,通过假设场景来描述机器学习的过程,然后再去看其他更权威的文章,那些公式可能就更容易理解了。

相关推荐
杭州泽沃电子科技有限公司1 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器1 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
木头左1 小时前
缺失值插补策略比较线性回归vs.相邻填充在LSTM输入层的性能差异分析
算法·线性回归·lstm
OJAC1111 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心1 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云1 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周2 小时前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran2 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_2 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳20062 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习