依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.14.6</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
快速上手
1.增添依赖
2.在根目录,添加input文件
DataSet API实现wordcount(已经不能用了)
package org.example;
/*
* @Auther:huangzhiyang
* @Date:2023/9/26
* @Description:wc
*/
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
public class wordCountBatchDemo {
public static void main(String[] args) throws Exception {
// TODO: 2023/9/26 创建执行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// TODO: 2023/9/26 读取数据
DataSource<String> lineDS = env.readTextFile("input/word.txt");
// TODO: 2023/9/26 切分转换
FlatMapOperator<String, Tuple2<String, Integer>> wordAndOne = lineDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {
// TODO: 2023/9/26 按照空格切分单词
String[] words = s.split(" ");
// TODO: 2023/9/26 将单词转为tuple2
for (String word : words) {
Tuple2<String, Integer> tuple2 = Tuple2.of(word, 1);
// TODO: 2023/9/26 使用collector向下游发送数据
collector.collect(tuple2);
}
}
});
// TODO: 2023/9/26 按照word分组
UnsortedGrouping<Tuple2<String, Integer>> wordAndOneGroupBY = wordAndOne.groupBy(0);
// TODO: 2023/9/26 各分组内聚合
AggregateOperator<Tuple2<String, Integer>> sum = wordAndOneGroupBY.sum(1);//1是位置,表示第二个元素
// TODO: 2023/9/26 输出
sum.print();
}
}