基于被囊群优化的BP神经网络(分类应用) - 附代码

基于被囊群优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用被囊群算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.被囊群优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 被囊群算法应用

被囊群算法原理请参考:https://blog.csdn.net/u011835903/article/details/107615961

被囊群算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从被囊群算法的收敛曲线可以看到,整体误差是不断下降的,说明被囊群算法起到了优化的作用:



5.Matlab代码

相关推荐
Coding茶水间7 分钟前
基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Blossom.11833 分钟前
基于多模态大模型的工业质检系统:从AOI到“零样本“缺陷识别的产线实践
运维·人工智能·python·机器学习·自动化·测试用例·知识图谱
美狐美颜sdk38 分钟前
什么是美颜SDK?一套成熟直播美颜SDK需要解决哪些工程技术问题?
人工智能·美颜sdk·第三方美颜sdk·视频美颜sdk·人脸美型sdk
无代码专家1 小时前
无代码:打破技术桎梏,重构企业数字化落地新范式
大数据·人工智能·重构
usrcnusrcn1 小时前
告别PoE管理盲区:有人物联网工业交换机如何以智能供电驱动工业未来
大数据·网络·人工智能·物联网·自动化
雍凉明月夜1 小时前
视觉opencv学习笔记Ⅴ-数据增强(1)
人工智能·python·opencv·计算机视觉
骚戴1 小时前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm
CNRio1 小时前
从智能穿戴设备崛起看中国科技自立自强的创新实践
人工智能·科技·物联网
疾风sxp1 小时前
nl2sql技术实现自动sql生成之Spring AI Alibaba Nl2sql
java·人工智能
程序猿追1 小时前
使用GeeLark+亮数据,做数据采集打造爆款内容
运维·服务器·人工智能·机器学习·架构