代谢组学最常用到的数据分析方法(五)

代谢组学是一门对某一生物或细胞所有低分子质量代谢产物(以相对分子质量<1000的有机和无机的代谢物为研究核心区)进行分析的新兴学科。因此从复杂的代谢组学数据中确定与所研究的现象有关的代谢物,筛选出候选生物标记物成为代谢物组学研究的热点和难点

代谢组学分析数据用于统计分析时,数据集通常为一个N × K的矩阵(X矩阵),N表示N个样本数,每一行代表一个样品, K表示K个变量,每一列代表一个变量,在代谢组学中变量通常是指代谢物含量。最常用的分析方法如图1所示:

单变量分析方法

单变量分析方法仅分别分析单个变量,不考虑多个变量的相互作用与内在联系。具有简单性、易应用性和可解释性。但是无法基于整体数据对所测样品的优劣、差异进行综合评价和分析。

差异倍数分析

差异倍数变化大小(Fold Change,FC)表示实验组与对照组的含量比值,可以快速考察各个代谢物在不同组别之间的含量变化大小。

显著性检验

p值即概率,反映某一事件发生的可能性大小,用于区分该变量是否具有统计显著性,通常认为p<0.05具有统计显著性。常用的检验方法有t-test、方差分析(Analysis of Variance, ANOVA),但是由于代谢组学的变量较多,必要时需要进行多重假设检验,对p值进行校正,减少Ⅰ类错误,降低假阳性。

多变量分析

多变量分析分为无监督分析方法有监督分析方法。在代谢组学分析中无监督学习有主成分分析(Principal Component Analysis,PCA),只需要数据集X,而有监督分析方法主要是偏最小二乘判别分析(Partial Least Squares Discrimination Analysis, PLS-DA)和正交偏最小二乘判别分析(Orthogonal Partial Least Squares Discrimination Analysis , OPLS-DA),这类方法在分析时除了需要数据集X,还需对样品进行指定并分组, 这样分组后模型将自动加上另外一个隐含的数据集Y,通常Y的赋值用-1/1或者0/1表示类别信息。

PCA

PCA是一种使用最广泛的数据降维算法,先找出数据X矩阵的方差最大方向作为PC1,在与PC1正交的平面中找出使得方差最大的作为PC2,依次类推。从而建立低维平面或空间 (通常2~5 维), 以此分析和概览整个数据集。PCA不是一种分类方法,但能提供对复杂数据集的直观解释,并从中揭示出数据集中观测数据的分组、趋势以及离群。对明显不同于大部分样品的离群样品,可加以甄别或剔除。如图2所示。另外,如果存在质控样品,PCA还可进行质控,如果质控样品很分散或具有一定的变化趋势,则说明检测质量存在一定的问题。

PLS-DA

PLS-DA在降维的同时结合了回归模型,并利用一定的判别阈值对回归结果进行判别分析。通过多元线性回归技术来找到数据集(X)和类别数据集(Y)之间的最大协方差的方向,建立两个独立数据集 (X−Y) 潜在关联分析方法, 即基于 X 变量数据信息, 建立Y 变量预测模型 (X→Y)。

这种模型计算的方法强行把各组分开, 有利于发现不同组间的异同点。对于组间差异不够明显的样品, 采用PCA 方法常常无法区分样品的组间差异, 这种情况下采用PLS-DA 模型可能更加有效。如图3所示。同时也能识别潜在的生物标记物,适用于两组或者两组以上分析,在需要同时观察多组别样品相似性和差异性时体现更大价值。但是如果主成分过多或分组过于复杂而出现过拟合现象 (over-fitting), 会造成模型失真, 在实际数据分析时应注意验证模型有效性和可靠性。

OPLS-DA

数据集X总会含有一些与研究无关的干扰信号,如人的生活方式,植物的生长环境或检测仪器的噪音干扰等。若能滤掉这些噪音会有助于发现最重要的变量,提高模型的有效性。

与PLS相比,OPLS根据数据集Y的差异将数据集X的差异分为两个部分,第一部分代表与Y相关的差异, 第二部分代表与Y不相关 (正交垂直)的差异,OPLS-DA可将这两部分差异进行区分,控制与Y正交或者无关的X的变化并加以滤除。通过这种方式,OPLS-DA可以更好地区分组间差异,提高模型的有效性和解析能力。如图4所示,OPLS-DA将组间差异主要集中在第一个预测主成分上,即X轴。OPLS-DA常用于对两组样品的代谢组学数据进行判别分析, 能清晰展现组间样品差别并能直接解释和识别潜在的生物标志物。

相关推荐
数模竞赛Paid answer4 小时前
2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
数学建模·数据分析·mathorcup
Watermelo6175 小时前
通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制
人工智能·深度学习·神经网络·mongodb·机器学习·自然语言处理·数据挖掘
悟解了5 小时前
《数据可视化技术》上机报告
python·信息可视化·数据分析
Leo.yuan20 小时前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
海边散步的蜗牛1 天前
学术论文写作丨机器学习与深度学习
人工智能·深度学习·机器学习·chatgpt·数据分析·ai写作
数模竞赛Paid answer1 天前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup
爱睡觉的咋1 天前
GNN入门案例——KarateClub结点分类
人工智能·分类·数据挖掘·图神经网络
康谋自动驾驶1 天前
康谋分享 | 确保AD/ADAS系统的安全:避免数据泛滥的关键
数据分析·自动驾驶·汽车
封步宇AIGC1 天前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_523674211 天前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘