Llama2-Chinese项目:4-量化模型

一.量化模型调用方式

下面是一个调用FlagAlpha/Llama2-Chinese-13b-Chat[1]的4bit压缩版本FlagAlpha/Llama2-Chinese-13b-Chat-4bit[2]的例子:

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized('FlagAlpha/Llama2-Chinese-13b-Chat-4bit', device="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('FlagAlpha/Llama2-Chinese-13b-Chat-4bit',use_fast=False)
input_ids = tokenizer(['<s>Human: 怎么登上火星\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')        
generate_input = {
    "input_ids":input_ids,
    "max_new_tokens":512,
    "do_sample":True,
    "top_k":50,
    "top_p":0.95,
    "temperature":0.3,
    "repetition_penalty":1.3,
    "eos_token_id":tokenizer.eos_token_id,
    "bos_token_id":tokenizer.bos_token_id,
    "pad_token_id":tokenizer.pad_token_id
}
generate_ids  = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

这里面有个问题就是由Llama2-Chinese-13b-Chat如何得到Llama2-Chinese-13b-Chat-4bit?这涉及另外一个AutoGPTQ库(一个基于GPTQ算法,简单易用且拥有用户友好型接口的大语言模型量化工具包)[3]。先梳理下思路,由于meta-llama/Llama-2-13b-chat-hf对中文支持较差,所以采用中文指令集在此基础上进行LoRA微调得到了FlagAlpha/Llama2-Chinese-13b-Chat-LoRA,而FlagAlpha/Llama2-Chinese-13b-Chat=FlagAlpha/Llama2-Chinese-13b-Chat-LoRA+meta-llama/Llama-2-13b-chat-hf,即将两者参数合并后的版本。FlagAlpha/Llama2-Chinese-13b-Chat-4bit就是对FlagAlpha/Llama2-Chinese-13b-Chat进行4bit量化后的版本。总结起来就是如何合并,如何量化这2个问题。官方提供的一些合并参数后的模型[4],如下所示:

二.如何合并LoRA Model和Base Model

网上合并LoRA参数和原始模型的脚本很多,参考文献[6]亲测可用。合并后的模型格式包括pthhuggingface两种。如下所示:
1.LoRA Model文件列表

对于LLama2-7B-hf进行LoRA微调生成文件如下所示:

adapter_config.json
adapter_model.bin
optimizer.pt
README.md
rng_state.pth
scheduler.pt
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
trainer_state.json
training_args.bin

2.Base Model文件列表

LLama2-7B-hf文件列表,如下所示:

config.json
generation_config.json
gitattributes.txt
LICENSE.txt
model-00001-of-00002.safetensors
model-00002-of-00002.safetensors
model.safetensors.index.json
pytorch_model-00001-of-00002.bin
pytorch_model-00002-of-00002.bin
pytorch_model.bin.index.json
README.md
Responsible-Use-Guide.pdf
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
USE_POLICY.md

3.合并后huggingface文件列表

合并LoRA Model和Base Model后,生成huggingface格式文件列表,如下所示:

config.json
generation_config.json
pytorch_model-00001-of-00007.bin
pytorch_model-00002-of-00007.bin
pytorch_model-00003-of-00007.bin
pytorch_model-00004-of-00007.bin
pytorch_model-00005-of-00007.bin
pytorch_model-00006-of-00007.bin
pytorch_model-00007-of-00007.bin
pytorch_model.bin.index.json
special_tokens_map.json
tokenizer.model
tokenizer_config.json

4.合并后pth文件列表

合并LoRA Model和Base Model后,生成pth格式文件列表,如下所示:

consolidated.00.pth
params.json
special_tokens_map.json
tokenizer.model
tokenizer_config.json

5.合并脚本[6]思路

以合并后生成huggingface模型格式为例,介绍合并脚本的思路,如下所示:

# 步骤1:加载base model
base_model = LlamaForCausalLM.from_pretrained(
    base_model_path, # 基础模型路径
    load_in_8bit=False, # 加载8位
    torch_dtype=torch.float16, # float16
    device_map={"": "cpu"}, # cpu
)

# 步骤2:遍历LoRA模型
for lora_index, lora_model_path in enumerate(lora_model_paths):
    # 步骤3:根据base model和lora model来初始化PEFT模型
    lora_model = PeftModel.from_pretrained(
                base_model, # 基础模型
                lora_model_path, # LoRA模型路径
                device_map={"": "cpu"}, # cpu
                torch_dtype=torch.float16, # float16
            )
    # 步骤4:将lora model和base model合并为一个独立的model         
    base_model = lora_model.merge_and_unload()
    ......

# 步骤5:保存tokenizer
tokenizer.save_pretrained(output_dir)

# 步骤6:保存合并后的独立model
LlamaForCausalLM.save_pretrained(base_model, output_dir, save_function=torch.save, max_shard_size="2GB")

合并LoRA Model和Base Model过程中输出日志可参考huggingface[7]和pth[8]。

三.如何量化4bit模型

如果得到了一个训练好的模型,比如LLama2-7B,如何得到LLama2-7B-4bit呢?因为模型参数越来越多,多参数模型的量化还是会比少参数模型的非量化效果要好。量化的方案非常的多[9][12],比如AutoGPTQ、GPTQ-for-LLaMa、exllama、llama.cpp等。下面重点介绍下AutoGPTQ的基础实践过程[10],AutoGPTQ进阶教程参考文献[11]。

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig # 量化配置
from transformers import AutoTokenizer

# 第1部分:量化一个预训练模型
pretrained_model_name = r"L:/20230713_HuggingFaceModel/20230903_Llama2/Llama-2-7b-hf" # 预训练模型路径
quantize_config = BaseQuantizeConfig(bits=4, group_size=128) # 量化配置,bits表示量化后的位数,group_size表示分组大小
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_name, quantize_config) # 加载预训练模型
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) # 加载tokenizer

examples = [ # 量化样本
    tokenizer(
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    )
]
# 翻译:准备examples(一个只有两个键'input_ids'和'attention_mask'的字典列表)来指导量化。这里只使用一个文本来简化代码,但是应该注意,使用的examples越多,量化后的模型就越好(很可能)。
model.quantize(examples) # 执行量化操作,examples提供量化过程所需的示例数据
quantized_model_dir = "./llama2_quantize_AutoGPTQ" # 保存量化后的模型
model.save_quantized(quantized_model_dir) # 保存量化后的模型


# 第2部分:加载量化模型和推理
from transformers import TextGenerationPipeline # 生成文本

device = "cuda:0"
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device=device) # 加载量化模型
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer, device=device) # 得到pipeline管道
print(pipeline("auto-gptq is")[0]["generated_text"]) # 生成文本

参考文献:

[1]https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat

[2]https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat-4bit

[3]https://github.com/PanQiWei/AutoGPTQ/blob/main/README_zh.md

[4]https://github.com/FlagAlpha/Llama2-Chinese#基于Llama2的中文微调模型

[5]CPU中合并权重(合并思路仅供参考):https://github.com/yangjianxin1/Firefly/blob/master/script/merge_lora.py

[6]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora.py

[7]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora_log/merge_llama_with_lora_hf_log

[8]https://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/merge_llama_with_lora_log/merge_llama_with_lora_pt_log

[9]LLaMa量化部署:https://zhuanlan.zhihu.com/p/641641929

[10]AutoGPTQ基础教程:https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md

[11]AutoGPTQ进阶教程:https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/02-Advanced-Model-Loading-and-Best-Practice.md

[12]Inference Experiments with LLaMA v2 7b:https://github.com/djliden/inference-experiments/blob/main/llama2/README.md

[13]llama2_quantize_AutoGPTQhttps://github.com/ai408/nlp-engineering/blob/main/20230916_Llama2-Chinese/tools/llama2_quantize_AutoGPTQ.py

相关推荐
通信.萌新43 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家1 小时前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼1 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类
Bran_Liu1 小时前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
伟贤AI之路1 小时前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying551 小时前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask