神经网络基础

1.反向传播(这边推荐买鱼书)补充:反向传播就是求偏导

(1)加法门单元:均等分配

z=x+y

z对x求偏导:得到1

z对y求偏导:得到1

也就是均等分配

(2)MAX门单元:给最大的

(3)乘法门单元:互换

z=xy
z对x求偏导:得到y
z对y求偏导:得到x

绿色是前向传播:
输入x=3 , y=-4 ,通过乘法门单元,得到x
y=-12。

输入x=2 , y=0 ,通过max门单元,得到结果2。

-12+2=-10 ,-10*2=-20.

红色是反向传播:

输入1,12=2 ,如何加法门单元求偏导,所以上下都是2
然后2
3=6 ,乘法门单元进行互换。

然后2*(-4)=-8门单元。

2通过max门单元,给原本绿色值比较大的z, 所以z=2;所以w=0.

2.


相关推荐
神马行空42 分钟前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
Json_1 小时前
Vue 构造器 Vue.extend
前端·vue.js·深度学习
Json_1 小时前
Vue 实例方法
前端·vue.js·深度学习
mosquito_lover11 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant1 小时前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
契合qht53_shine1 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Json_2 小时前
实例入门 实例属性
前端·深度学习