R语言实现随机生存森林(3)

常见问题解答

1、计算C指数

1-Error rate,或者

复制代码
rsf.err <- get.cindex(yvar$Survival_months,yvar$OS,predicted=rf.grow$predicted)

2、模型中predicted和predicted.oob区别

predictedpredicted.oob是两个不同的属性,它们分别表示模型的预测结果和袋外(out-of-bag)预测结果。predicted是指通过随机森林模型对训练数据的预测结果。当你使用模型来对训练数据进行预测时,predicted会给出每个样本的预测值。predicted.oob是指模型对袋外(out-of-bag)样本的预测结果。袋外样本是在随机森林的构建中没有被用于训练的样本。这些样本用于估计模型的泛化性能。predicted.oob包含了对每个袋外样本的预测值,这些值可以用于评估模型在未见过的数据上的表现。在实际操作中如果bootstrap为"none",则只有predicted结果,若为"by.root"(默认值),则有predictedpredicted.oob。

3、如何绘制随机生存森林的DCA曲线?

复制代码
library(riskRegression)
library(dcurves)
`1 year`<-predictRisk(rf.grow,newdata=ss,time=12)#rf.grow为建立的随机生存森林模型
ss$`1 year`<-`1 year`
d<-dcurves::dca(Surv(Survival_months, OS) ~ `1 year`,
             data = ss,
             time = 12 # 时间选1年
)%>% dcurves::as_tibble()
library(ggplot2)
ggplot(d, aes(x=threshold, y=net_benefit,color=variable))+
  stat_smooth(method = "loess", se = FALSE, formula = "y ~ x", span = 0.2) +
  coord_cartesian(ylim = c(-0.01, 0.6)) +
  scale_x_continuous(labels = scales::label_percent(accuracy = 1)) +
  labs(x = "Threshold Probability", y = "Net Benefit", color = "") +
  theme_bw()
相关推荐
玦尘、7 分钟前
《统计学习方法》第4章——朴素贝叶斯法【学习笔记】
笔记·机器学习
网安INF41 分钟前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归
程序猿追1 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
陈天伟教授1 小时前
机器学习方法(4)强化学习(试错学习)
人工智能·学习·机器学习
大千AI助手4 小时前
ROUGE-SU4:文本摘要评估的跳连智慧
人工智能·机器学习·nlp·rouge·文本摘要·大千ai助手·rouge-su4
春日见8 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
y***866913 小时前
C机器学习.NET生态库应用
人工智能·机器学习
ChoSeitaku13 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
二川bro14 小时前
AutoML自动化机器学习:Python实战指南
python·机器学习·自动化
大千AI助手16 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归