机器学习—为什么我们需要激活函数

如果我们使用神经网络中每个神经元的线性激活函数,回想一下这个需求预测示例,如果对所有节点使用线性激活函数,在这个神经网络中,事实证明,这个大神经网络将变得与线性回归没有什么不同,所以这将挫败使用神经网络的全部目的,只是无法拟合比线性回归模型更复杂的东西。

用一个更简单的例子来说明这一点,看一个神经网络的例子,其中输入x只是一个数字,有一个隐藏单位,参数w和b,输出一个,这里只是一个数字a[1],然后第二层是输出层,它也只有一个输出单元,参数为w2 b2,输出一个a2,也就是一个数字,只是一个标量,它是神经网络f(x)的输出,如果用线性激活函数,g(z)=z,将x=a1计算,神经网络将使用a1=g(w)*x+b1,具体替换如下图所示,所以w只是一个线性函数而不是使用一个隐藏层和一个输出层的神经网络,还不如用线性回归模型,如果熟悉线性代数,线性函数的线性函数本身就是线性函数,这就是为什么在神经网络中有多层,不会让神经网络计算更复杂的特征或者学习比线性函数更复杂的东西。

所以在一般情况下,如果你有一个像这样的多层神经网络,假设你对所有隐藏层使用线性激活函数,并对输出层使用线性激活函数,这个模型将计算出完全等价于线性回归的输出,输出a4可以表示为输入特征的线性函数,如果仍然对所有隐藏层使用线性激活函数,这里的这三个隐藏层,但我们要对输出层使用逻辑激活函数,然后证明这个模型等价于Logistic回归,所以这个大神经网络什么也不做,不能用逻辑回归,这就是为什么一个常见的经验法则是不要在神经网络的隐藏层中使用线性激活函数,事实上,使用relu激活函数应该很好。

相关推荐
kakaZhui4 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20251 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥1 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
追求源于热爱!1 小时前
记5(一元逻辑回归+线性分类器+多元逻辑回归
算法·机器学习·逻辑回归
云空2 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
爱喝奶茶的企鹅3 小时前
构建一个研发助手Agent:提升开发效率的实践
机器学习
山晨啊83 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天4 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式
davenian4 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek