机器学习——简单线性回归、逻辑回归

简单线性回归

线性回归用于预测一个连续的数值输出(因变量),其模型假设输入特征(自变量)和输出之间存在线性关系。基本的线性回归模型如下:

损失函数

线性回归通常通过最小二乘法来估计回归系数。最小二乘法的目标是最小化预测值和真实值之间的差异,即最小化损失函数。对于线性回归,损失函数通常是均方误差:

参数优化

通过梯度下降算法更新回归系数和偏置项,逐步减少损失函数的值。

优点

  • 简单易懂,计算效率高

  • 可解释性强,系数的符号和大小能直接反映特征对输出的影响

缺点

  • 对异常值敏感,容易受到影响

  • 无法处理数据的多重共线性问题

代码示例

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# 示例数据
X = np.array([[650], [800], [1200], [1500], [1800], [2000], [2300], [2500]])
y = np.array([150, 180, 240, 290, 330, 350, 390, 410])

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型并训练
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 输出模型的系数和截距
print("模型系数:", model.coef_)
print("截距:", model.intercept_)

# 预测结果
print("实际价格:", y_test)
print("预测价格:", y_pred)

# 可视化结果
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.scatter(X, y, color="blue", label="实际数据") 
plt.plot(X, model.predict(X), color="red", label="预测直线")  # 预测直线
plt.legend()
plt.show()

逻辑回归

逻辑回归用于分类问题,尤其是二分类问题。尽管名字中有"回归",它实际上是一个分类算法。逻辑回归通过对线性回归的输出进行sigmoid函数转换,将其映射到0到1之间,从而得到一个概率值,用于判断输入样本属于某个类别的概率。

线性模型

激活函数(sigmoid函数)

正类概率(类别1)

损失函数(对数似然函数)

逻辑回归的目标是找到最优的参数 www,使得模型对训练数据的预测概率最大。

参数优化

逻辑回归使用梯度下降或类似的方法(如随机梯度下降)来优化损失函数。通过计算损失函数相对于参数w的梯度并不断调整w的值,可以找到最优的参数。

分类决策

当 P(Y=1∣X)≥0.5时,预测为正类,否则预测为负类。

示例代码

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 示例数据
data = pd.DataFrame({
    '年龄': [22, 25, 28, 32, 35, 40, 45, 50, 60],
    '年收入': [2.5, 5.0, 6.5, 7.5, 8.5, 10.0, 12.5, 15.0, 20.0],
    '购买': [0, 0, 0, 1, 1, 1, 1, 0, 1]
})

# 划分特征和标签
X = data[['年龄', '年收入']]
y = data['购买']

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)

print("预测结果:", y_pred)
print("准确率:", accuracy)
相关推荐
A懿轩A6 分钟前
C/C++ 数据结构与算法【哈夫曼树】 哈夫曼树详细解析【日常学习,考研必备】带图+详细代码
c语言·c++·学习·算法·哈夫曼树·王卓
新中地GIS开发老师8 分钟前
25考研希望渺茫,工作 VS 二战,怎么选?
javascript·学习·考研·arcgis·地理信息科学·地信
sensen_kiss13 分钟前
CAN201 Introduction to Networking(计算机网络)Pt.3 网络层
网络·学习·计算机网络·智能路由器
qq_2739002324 分钟前
PyTorch Lightning Callback介绍
人工智能·pytorch·python
朝九晚五ฺ44 分钟前
【Linux探索学习】第二十四弹——软硬链接:Linux 中的软链接与硬链接详解
linux·运维·chrome·学习
红色的山茶花1 小时前
YOLOv9-0.1部分代码阅读笔记-train.py
笔记·深度学习·yolo
游客5201 小时前
设计模式-创建型-工厂方法模式
开发语言·python·设计模式·工厂方法模式
m0_748239831 小时前
Python毕业设计选题:基于django的民族服饰数据分析系统的设计与实现_hadoop+spider
python·django·课程设计
cxr8281 小时前
洪水灾害多智能体分布式模拟示例代码
深度学习·机器学习·迁移学习
m0_748234901 小时前
Hmsc包开展群落数据联合物种分布模型分析通用流程(Pipelines)
开发语言·python