机器学习——简单线性回归、逻辑回归

简单线性回归

线性回归用于预测一个连续的数值输出(因变量),其模型假设输入特征(自变量)和输出之间存在线性关系。基本的线性回归模型如下:

损失函数

线性回归通常通过最小二乘法来估计回归系数。最小二乘法的目标是最小化预测值和真实值之间的差异,即最小化损失函数。对于线性回归,损失函数通常是均方误差:

参数优化

通过梯度下降算法更新回归系数和偏置项,逐步减少损失函数的值。

优点

  • 简单易懂,计算效率高

  • 可解释性强,系数的符号和大小能直接反映特征对输出的影响

缺点

  • 对异常值敏感,容易受到影响

  • 无法处理数据的多重共线性问题

代码示例

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# 示例数据
X = np.array([[650], [800], [1200], [1500], [1800], [2000], [2300], [2500]])
y = np.array([150, 180, 240, 290, 330, 350, 390, 410])

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型并训练
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 输出模型的系数和截距
print("模型系数:", model.coef_)
print("截距:", model.intercept_)

# 预测结果
print("实际价格:", y_test)
print("预测价格:", y_pred)

# 可视化结果
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.scatter(X, y, color="blue", label="实际数据") 
plt.plot(X, model.predict(X), color="red", label="预测直线")  # 预测直线
plt.legend()
plt.show()

逻辑回归

逻辑回归用于分类问题,尤其是二分类问题。尽管名字中有"回归",它实际上是一个分类算法。逻辑回归通过对线性回归的输出进行sigmoid函数转换,将其映射到0到1之间,从而得到一个概率值,用于判断输入样本属于某个类别的概率。

线性模型

激活函数(sigmoid函数)

正类概率(类别1)

损失函数(对数似然函数)

逻辑回归的目标是找到最优的参数 www,使得模型对训练数据的预测概率最大。

参数优化

逻辑回归使用梯度下降或类似的方法(如随机梯度下降)来优化损失函数。通过计算损失函数相对于参数w的梯度并不断调整w的值,可以找到最优的参数。

分类决策

当 P(Y=1∣X)≥0.5时,预测为正类,否则预测为负类。

示例代码

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 示例数据
data = pd.DataFrame({
    '年龄': [22, 25, 28, 32, 35, 40, 45, 50, 60],
    '年收入': [2.5, 5.0, 6.5, 7.5, 8.5, 10.0, 12.5, 15.0, 20.0],
    '购买': [0, 0, 0, 1, 1, 1, 1, 0, 1]
})

# 划分特征和标签
X = data[['年龄', '年收入']]
y = data['购买']

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)

print("预测结果:", y_pred)
print("准确率:", accuracy)
相关推荐
m0_7369191011 分钟前
用Pandas处理时间序列数据(Time Series)
jvm·数据库·python
getapi14 分钟前
实时音视频传输与屏幕共享(投屏)
python
觉醒大王15 分钟前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
近津薪荼27 分钟前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
方安乐31 分钟前
科普:股票 vs 债券的区别
笔记
java干货43 分钟前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
机器懒得学习44 分钟前
智能股票分析系统
python·深度学习·金融
毕设源码-郭学长44 分钟前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
SR_shuiyunjian1 小时前
Python第三次作业
python
vx_biyesheji00011 小时前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts