【matplotlib 实战】--平行坐标系

平行坐标系是一种统计图表,它包含多个垂直平行的坐标轴,每个轴表示一个字段,并用刻度标明范围。通过在每个轴上找到数据点的落点,并将它们连接起来形成折线,可以很容易地展示多维数据。

随着数据增多,折线会堆叠,分析者可以从中发现数据的特性和规律,比如发现数据之间的聚类关系。

尽管平行坐标系与折线图表面上看起来相似,但它并不表示趋势,各个坐标轴之间也没有因果关系。

因此,在使用平行坐标系时,轴的顺序是可以人为决定的,这会影响阅读的感知和判断。较近的两根坐标轴会使对比感知更强烈。

因此,为了得出最合适和美观的排序方式,通常需要进行多次试验和比较。

同时,尝试不同的排序方式也可能有助于得出更多的结论。

此外,平行坐标系的每个坐标轴很可能具有不同的数据范围,这容易导致读者的误解。

因此,在绘制图表时,最好明确标明每个轴上的最小值和最大值。

1. 主要元素

平行坐标系是一种常用的数据可视化方法,用于展示多个维度的数据,并通过连接这些维度的线段来揭示它们之间的关系。

它的主要元素包括:

  1. 坐标轴:平行坐标系通常由垂直于数据维度的坐标轴组成,每个坐标轴代表一个数据维度。
  2. 数据点:每个数据点在平行坐标系中由一条连接各个坐标轴的线段表示,线段的位置和形状反映了数据点在各个维度上的取值。
  3. 连接线:连接线用于将同一数据点在不同维度上的线段连接起来,形成数据点的轮廓,帮助观察者理解数据点在各个维度上的变化趋势。

2. 适用的场景

平行坐标系适用的场景有:

  • 多维数据分析:平行坐标系适用于展示多个维度的数据,帮助观察者发现不同维度之间的关系和趋势,例如在探索数据集中的模式、异常值或相关性时。
  • 数据分类和聚类:通过观察数据点的轮廓和分布,可以帮助观察者识别不同的数据类别或聚类。
  • 数据交互与过滤:平行坐标系可以支持交互式数据探索和过滤,通过选择或操作特定的坐标轴或线段,可以对数据进行筛选和聚焦。

3. 不适用的场景

平行坐标系不适用的场景有:

  • 数据维度过多:当数据维度过多时,平行坐标系的可读性和解释性可能会下降,因为线段之间的交叉和重叠会导致视觉混乱。
  • 数据维度之间差异较大:如果数据在不同维度上的取值范围差异较大,那么线段之间的比较和分析可能会受到影响,因为较小的取值范围可能会被较大的取值范围所掩盖。
  • 数据具有时间序列:平行坐标系并不适用于展示时间序列数据,因为它无法准确地表示数据的时间顺序。在这种情况下,其他的数据可视化方法,如折线图或时间轴图,可能更适合。

4. 分析实战

平行坐标系适用于展示具有相同属性的一系列数据,每个坐标系代表一种属性。

这次选用了国家统计局公开的教育类数据:https://databook.top/nation/A0M

选取其中几类具有相同属性的数据:

  1. A0M06:各级各类学校专任教师数
  2. A0M07:各级各类学校招生数
  3. A0M08:各级各类学校在校学生数
  4. A0M09:各级各类学校毕业生数

4.1. 数据来源

四个原始数据集是按照年份统计的:

python 复制代码
fp = "d:/share/A0M06.csv"

df = pd.read_csv(fp)
df

这是教师相关统计数据,其他3个数据集的结构也类似。

4.2. 数据清理

平行坐标系比较的是属性,不需要每年的数据。

所以,对于上面4个数据集,分别提取2022年小学初中高中特殊教育 相关4个属性的数据。

python 复制代码
import os

files = {
    "教师数": "A0M06.csv",
    "招生数": "A0M07.csv",
    "在校学生数": "A0M08.csv",
    "毕业学生数": "A0M09.csv",
}
data_dir = "d:/share"

data = pd.DataFrame()
for key in files:
    fp = os.path.join(data_dir, files[key])
    df = pd.read_csv(fp)
    df_filter = pd.DataFrame(
        [[
            key,
            df.loc[225, "value"],
            df.loc[135, "value"],
            df.loc[90, "value"],
            df.loc[270, "value"],
        ]],
        columns=["name", "小学", "初中", "高中", "特殊教育"],
    )
    data = pd.concat([data, df_filter])

data

4.3. 分析结果可视化

平行坐标系在 matplotlib 中没有直接提供,实现起来也不难:

python 复制代码
import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches
import numpy as np

xnames = data.loc[:, "name"]
ynames = ["小学", "初中", "高中", "特殊教育"]
ys = np.array(data.iloc[:, 1:].values.tolist())
ymins = ys.min(axis=0)
ymaxs = ys.max(axis=0)
dys = ymaxs - ymins
ymins -= dys * 0.05  # Y轴的上下限增加 5% 的冗余
ymaxs += dys * 0.05

#每个坐标系的上下限不一样,调整显示方式
zs = np.zeros_like(ys)
zs[:, 0] = ys[:, 0]
zs[:, 1:] = (ys[:, 1:] - ymins[1:]) / dys[1:] * dys[0] + ymins[0]

fig, host = plt.subplots(figsize=(10, 4))

axes = [host] + [host.twinx() for i in range(ys.shape[1] - 1)]
for i, ax in enumerate(axes):
    ax.set_ylim(ymins[i], ymaxs[i])
    ax.spines["top"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    if ax != host:
        ax.spines["left"].set_visible(False)
        ax.yaxis.set_ticks_position("right")
        ax.spines["right"].set_position(("axes", i / (ys.shape[1] - 1)))

host.set_xlim(0, ys.shape[1] - 1)
host.set_xticks(range(ys.shape[1]))
host.set_xticklabels(ynames, fontsize=14)
host.tick_params(axis="x", which="major", pad=7)
host.spines["right"].set_visible(False)
host.xaxis.tick_top()
host.set_title("各类学校的师生数目比较", fontsize=18, pad=12)

colors = plt.cm.Set1.colors
legend_handles = [None for _ in xnames]
for j in range(ys.shape[0]):
    verts = list(
        zip(
            [x for x in np.linspace(0, len(ys) - 1, len(ys) * 3 - 2, endpoint=True)],
            np.repeat(zs[j, :], 3)[1:-1],
        )
    )
    codes = [Path.MOVETO] + [Path.CURVE4 for _ in range(len(verts) - 1)]
    path = Path(verts, codes)
    patch = patches.PathPatch(
        path, facecolor="none", lw=2, alpha=0.7, edgecolor=colors[j]
    )
    legend_handles[j] = patch
    host.add_patch(patch)

host.legend(
    xnames,
    loc="lower center",
    bbox_to_anchor=(0.5, -0.18),
    ncol=len(xnames),
    fancybox=True,
    shadow=True,
)
plt.tight_layout()
plt.show()

从图表中,可以看出一下几点,和我们对实际情况的印象是差不多的:

  1. 教师数量远小于学生数量
  2. 从小学到初中,高中,学生数量不断减少
  3. 招生数量和毕业生数量差不多

平行坐标系用于比较不同数据集相同属性

相关推荐
yannan201903136 分钟前
【算法】(Python)动态规划
python·算法·动态规划
蒙娜丽宁16 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev17 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子31 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python36 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
千天夜1 小时前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
放飞自我的Coder2 小时前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词