【无标题】

1. 【机器学习】机器学习笔记(吴恩达)-CSDN博客

  1. 误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。

  2. 梯度下降会自动采取更小的步骤,所以不需要随时间减小学习率a。

  3. 在梯度下降算法中,如果学习率太大,loss不是来回震荡,而是爆炸。如下图:在第二种情况中,如果学习率太大,参数更新超过了最小值点,由于学习率的放大作用,loss到了更高的一点,基于这点的偏导数,乘以放大的学习率,会反向跳到更大的loss处。所以,学习率太大,最终的loss不是震荡,而是爆炸。


4. 解决过拟合问题

降低特征数量:手动选择或者模型自动选择特征

正则化:保留特征,但是降低参数的幅值。

相关推荐
众趣科技16 分钟前
数字孪生重构智慧园区:众趣科技何以成为 VR 园区领域标杆
人工智能·3d·智慧城市·空间计算
心勤则明1 小时前
Spring AI 会话记忆实战:从内存存储到 MySQL + Redis 双层缓存架构
人工智能·spring·缓存
ARM+FPGA+AI工业主板定制专家3 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
长鸳词羡3 小时前
wordpiece、unigram、sentencepiece基本原理
人工智能
ㄣ知冷煖★3 小时前
【GPT5系列】ChatGPT5 提示词工程指南
人工智能
科士威传动3 小时前
丝杆支撑座在印刷设备如何精准运行?
人工智能·科技·自动化·制造
taxunjishu5 小时前
DeviceNet 转 Modbus TCP 协议转换在 S7-1200 PLC化工反应釜中的应用
运维·人工智能·物联网·自动化·区块链
kalvin_y_liu5 小时前
智能体框架大PK!谷歌ADK VS 微软Semantic Kernel
人工智能·microsoft·谷歌·智能体
爱看科技5 小时前
智能眼镜行业腾飞在即,苹果/微美全息锚定“AR+AI眼镜融合”之路抢滩市场!
人工智能·ar
Juchecar8 小时前
LLM模型与ML算法之间的关系
人工智能