【无标题】

1. 【机器学习】机器学习笔记(吴恩达)-CSDN博客

  1. 误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。

  2. 梯度下降会自动采取更小的步骤,所以不需要随时间减小学习率a。

  3. 在梯度下降算法中,如果学习率太大,loss不是来回震荡,而是爆炸。如下图:在第二种情况中,如果学习率太大,参数更新超过了最小值点,由于学习率的放大作用,loss到了更高的一点,基于这点的偏导数,乘以放大的学习率,会反向跳到更大的loss处。所以,学习率太大,最终的loss不是震荡,而是爆炸。


4. 解决过拟合问题

降低特征数量:手动选择或者模型自动选择特征

正则化:保留特征,但是降低参数的幅值。

相关推荐
边缘计算社区2 分钟前
第12届全球边缘计算大会-精彩瞬间
大数据·人工智能·边缘计算
后端小肥肠4 分钟前
DeepSeek3.2+Coze王炸组合!小红书这个隐秘赛道有人成交7万单,有手就行!
人工智能·aigc·coze
阳光普照世界和平12 分钟前
2025年智能体架构与主流技术深度研究报告:从生成式AI迈向自主执行层
人工智能·架构
hzp66624 分钟前
招牌红烧肉版-深度神经网络
人工智能·深度学习·神经网络·llm·aigc·dnn·反向传播
乾元25 分钟前
Service Mesh 与网络抽象:AI 如何做服务层次网络策略生成(微服务 / 云原生)
网络·人工智能·安全·微服务·云原生·运维开发·service_mesh
Zoey的笔记本28 分钟前
告别“人机混战”:如何用智能管控实现安全高效协同
大数据·人工智能
奥利文儿34 分钟前
【虚拟机】Ubuntu24安装Miniconda3全记录:避坑指南与实践
大数据·数据仓库·人工智能·数据库开发·etl·虚拟机·etl工程师
2401_8353024835 分钟前
精准测试赋能高端制造!陶瓷基板介电常数测试的核心价值
大数据·人工智能·制造
寂寞恋上夜1 小时前
从需求到开发任务:WBS拆解的4个层级(附排期模板)
人工智能·prompt·markdown转xmind·deepseek思维导图
Tipriest_1 小时前
配置用户pip源与查看当前的pip的源的办法
linux·人工智能·python·pip