基于闪电搜索优化的BP神经网络(分类应用) - 附代码

基于闪电搜索优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用闪电搜索算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.闪电搜索优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 闪电搜索算法应用

闪电搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108538622

闪电搜索算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从闪电搜索算法的收敛曲线可以看到,整体误差是不断下降的,说明闪电搜索算法起到了优化的作用:


5.Matlab代码

相关推荐
国产化创客几秒前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳20061 分钟前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)5 分钟前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路6 分钟前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶
2401_841495641 小时前
【自然语言处理】轻量版生成式语言模型GPT
人工智能·python·gpt·深度学习·语言模型·自然语言处理·transformer
梵得儿SHI1 小时前
(第三篇)Spring AI 基础入门:PromptTemplate 与对话工程实战(从字符串拼接到底层模板引擎的进阶之路)
人工智能·prompt·大模型应用·spring ai·prompttemplate·ai 响应的质量与准确性·上下文管理策略
Yolo566Q1 小时前
OpenLCA生命周期评估模型构建与分析
java·开发语言·人工智能
是Yu欸1 小时前
【博资考5】网安2025
网络·人工智能·经验分享·笔记·网络安全·ai·博资考
云和数据.ChenGuang1 小时前
tensorflow生成随机数和张量
人工智能·python·tensorflow