柱状图,是一种使用矩形条,对不同类别进行数值比较的统计图表。
在柱状图上,分类变量的每个实体都被表示为一个矩形(通俗讲即为"柱子"),而数值则决定了柱子的高度。
1. 主要元素
柱状图是一种用长方形柱子表示数据的图表。
它包含三个主要元素:
- 横轴(x轴):表示数据的类别或时间。
- 纵轴(y轴):表示数据的数量或百分比。
- 柱子:用于表示每个数据类别或时间段的数量或百分比,柱子的高度与数据的大小成比例。
2. 适用的场景
柱状图适用于以下分析场景:
- 比较不同类别或时间段的数量或百分比。
- 显示数据的分布情况,如数据的最大值、最小值、平均值等。
- 强调数据的变化趋势。
- 比较不同组之间的差异。
- 分析数据的增长或下降情况。
3. 不适用的场景
柱状图不适用于以下分析场景:
- 数据之间存在比例关系,如占比、比率等,此时应该使用饼图或堆积图。
- 数据之间存在时间序列关系,此时应该使用折线图。
- 数据之间存在空间关系,此时应该使用地图。
- 数据之间存在相关性关系,此时应该使用散点图。
4. 分析实战
这次选用王者荣耀2023年KPL春季赛 的战队 数据:https://databook.top/wzry/2023-spring
4.1. 数据来源
python
fp = "d:/share/league-2023春季赛.csv"
df = pd.read_csv(fp)
df.loc[:, ["排名", "战队", "比赛场次", "胜场"]]
4.2. 数据清理
本次实战用柱状图展示前6名的比赛场次和胜场,也就是每个战队有2个柱子。
python
df.loc[:5, ["排名", "战队", "比赛场次", "胜场"]]
4.3. 分析结果可视化
python
data = df.loc[:5, ["排名", "战队", "比赛场次", "胜场"]]
with plt.style.context("seaborn-v0_8"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
teams = data["战队"].tolist()
games = {
"比赛场次": data["比赛场次"].tolist(),
"胜场": data["胜场"].tolist(),
}
width = 0.25
multiplier = 0
x = np.arange(len(teams))
for name, vals in games.items():
offset = width*multiplier
rects = ax.bar(x+offset, vals, width, label=name)
ax.bar_label(rects, padding=3)
multiplier+=1
ax.set_title("2023-KPL春季赛前六名")
ax.set_xticks(x+0.1, teams)
ax.legend(loc="upper left")
第一名重庆狼队,比赛场次总数倒数第二,但是胜场数确实第一,胜率明显高于其他队伍,不愧是冠军队伍。
战队,选手和各个英雄的数据都已经整理好分享在上面的URL中,感兴趣的话可以自己分析看看其他数据情况。