卷积神经网络的发展历史-VGG

VGG的产生

2014 年,Simonyan和Zisserman提出了VGG系列模型(包括VGG-11/VGG-13/VGG-16/VGG-19),并在当年的ImageNet Challenge上作为分类任务第二名、定位(Localization)任务第一名的基础网络出现。

VGG的特点

VGG与当时其他卷积神经网络不同,不采用感受野大的卷积核(如:7×7,5×5),反而采用感受野小的卷积核(3×3)。关于这样做的好处有如下两点:减少网络参数量;由于参数量被大幅减小,于是可以用多个感受野小的卷积层替换掉之前一个感受野大的卷积层,从而增加网络的非线性表达能力。

代码示例

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l
def vgg_block(num_convs, in_channels, out_channels):
	layers = []
	for _ in range(num_convs):
		layers.append(nn.Conv2d(in_channels, out_channels, kernel_size = 3, padding=1))
		leyers.append(nn.ReLU())
		in_channels = out_channels
	layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
	return nn.Sequential(*layers)
相关推荐
Baihai_IDP5 分钟前
2025 年大语言模型架构演进:DeepSeek V3、OLMo 2、Gemma 3 与 Mistral 3.1 核心技术剖析
人工智能·llm·aigc
理智的煎蛋29 分钟前
GPU 服务器压力测试核心工具全解析:gpu-burn、cpu-burn 与 CUDA Samples
运维·服务器·人工智能·压力测试·gpu算力
陈敬雷-充电了么-CEO兼CTO31 分钟前
视频理解新纪元!VideoChat双模架构突破视频对话瓶颈,开启多模态交互智能时代
人工智能·chatgpt·大模型·多模态·世界模型·kimi·deepseek
simodai1 小时前
机器学习1.Anaconda安装+环境配置
人工智能·机器学习
IT_陈寒1 小时前
JavaScript 2024:10个颠覆你认知的ES新特性实战解析
前端·人工智能·后端
ModelWhale1 小时前
AI教育白皮书解读 | 医学教育数智化转型新机遇,“人工智能+”行动实践正当时
人工智能·ai
大模型真好玩1 小时前
大模型工程面试经典(五)—大模型微调与RAG该如何选?
人工智能·面试·deepseek
九章云极AladdinEdu2 小时前
临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集
人工智能·pytorch·数据挖掘·pandas·scikit-learn·paddlepaddle·gpu算力
上海锝秉工控2 小时前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
说私域2 小时前
基于开源AI智能名片、链动2+1模式与S2B2C商城小程序的流量运营与个人IP构建研究
人工智能·小程序·流量运营