Flink之Watermark策略代码模板

方式 作用
WatermarkStrategy.noWatermarks() 不生成watermark
WatermarkStrategy.forMonotonousTimestamps() 紧跟最大事件时间watermark生成策略
WatermarkStrategy.forBoundedOutOfOrderness() 允许乱序watermark生成策略
WatermarkStrategy.forGenerator() 自定义watermark生成策略
  • noWatermarks

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark生成策略,选择不生成watermark
          WatermarkStrategy<UserEvent2> watermark = WatermarkStrategy.noWatermarks();
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    关于noWaterMarks()的使用没有太多内容.

  • forMonotonousTimestamps

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用紧跟最大事件时间策略
          WatermarkStrategy<String> watermark = WatermarkStrategy.<String>forMonotonousTimestamps()
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    对于forMonotonousTimestamps()可说内容并不多,如果选择了forMonotonousTimestamps这种方式就必须保证事件时间严格有序,如果出现乱序的情况可能存在大量数据丢失的问题.
    通过源码内容可以看到forMonotonousTimestamps底层也是使用的forBoundedOutOfOrderness方式,只不过将容错时间设置为了0,源码如下:

    java 复制代码
    // 首先看这里,继承的BoundedOutOfOrdernessWatermarks
    public class AscendingTimestampsWatermarks<T> extends BoundedOutOfOrdernessWatermarks<T> {
    
      /** Creates a new watermark generator with for ascending timestamps. */
      public AscendingTimestampsWatermarks() {
          super(Duration.ofMillis(0)); // 这里将容错时间设置为了0
      }
    }
  • forBoundedOutOfOrderness

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用允许水位线乱序策略,并设置最大容错时间为2s
          WatermarkStrategy<String> watermark = WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofMillis(2000))
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    对于允许乱序策略前面文章有介绍过其原理,比如代码中设置容错时间为2S,那么前后的数据差最大只能是2S,如果差值大于2S,后来的这条数据就会被抛弃.

相关推荐
极客数模4 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
编程彩机6 小时前
互联网大厂Java面试:从分布式架构到大数据场景解析
java·大数据·微服务·spark·kafka·分布式事务·分布式架构
vx-bot5556666 小时前
企业微信接口在多租户SaaS平台中的集成架构与数据隔离实践
大数据·架构·企业微信
bubuly9 小时前
软件开发全流程注意事项:从需求到运维的全方位指南
大数据·运维·数据库
xixixi7777710 小时前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
Hello.Reader11 小时前
Flink 自适应批执行(Adaptive Batch Execution)让 Batch 作业“边跑边优化”
大数据·flink·batch
LaughingZhu12 小时前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营
babe小鑫12 小时前
中专学历进入快消大厂终端销售岗位的可行性分析
大数据
samFuB12 小时前
【工具变量】区县5A级旅游景区DID数据集(2000-2025年)
大数据
百夜﹍悠ゼ13 小时前
数据治理DataHub安装部署
大数据·数据治理