Flink之Watermark策略代码模板

方式 作用
WatermarkStrategy.noWatermarks() 不生成watermark
WatermarkStrategy.forMonotonousTimestamps() 紧跟最大事件时间watermark生成策略
WatermarkStrategy.forBoundedOutOfOrderness() 允许乱序watermark生成策略
WatermarkStrategy.forGenerator() 自定义watermark生成策略
  • noWatermarks

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark生成策略,选择不生成watermark
          WatermarkStrategy<UserEvent2> watermark = WatermarkStrategy.noWatermarks();
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    关于noWaterMarks()的使用没有太多内容.

  • forMonotonousTimestamps

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用紧跟最大事件时间策略
          WatermarkStrategy<String> watermark = WatermarkStrategy.<String>forMonotonousTimestamps()
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    对于forMonotonousTimestamps()可说内容并不多,如果选择了forMonotonousTimestamps这种方式就必须保证事件时间严格有序,如果出现乱序的情况可能存在大量数据丢失的问题.
    通过源码内容可以看到forMonotonousTimestamps底层也是使用的forBoundedOutOfOrderness方式,只不过将容错时间设置为了0,源码如下:

    java 复制代码
    // 首先看这里,继承的BoundedOutOfOrdernessWatermarks
    public class AscendingTimestampsWatermarks<T> extends BoundedOutOfOrdernessWatermarks<T> {
    
      /** Creates a new watermark generator with for ascending timestamps. */
      public AscendingTimestampsWatermarks() {
          super(Duration.ofMillis(0)); // 这里将容错时间设置为了0
      }
    }
  • forBoundedOutOfOrderness

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用允许水位线乱序策略,并设置最大容错时间为2s
          WatermarkStrategy<String> watermark = WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofMillis(2000))
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    对于允许乱序策略前面文章有介绍过其原理,比如代码中设置容错时间为2S,那么前后的数据差最大只能是2S,如果差值大于2S,后来的这条数据就会被抛弃.

相关推荐
TTBIGDATA1 天前
【Knox编译】xmlsectool 依赖缺失问题解析
大数据·hadoop·ambari·hdp·kerberos·knox·bigtop
天远Date Lab1 天前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
TechubNews1 天前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
BlockWay1 天前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
培培说证1 天前
2026 大专大数据与会计专业核心证书推荐什么
大数据
sensen_kiss1 天前
INT303 Big Data Analysis 大数据分析 Pt.11 模型选择和词向量(Word Embeddings)
大数据·数据挖掘·数据分析
代码方舟1 天前
Java后端实战:构建基于天远手机号码归属地核验的金融级风控模块
java·大数据·开发语言·金融
Dxy12393102161 天前
Elasticsearch 8.13.4 条件修改 DSL 语句详解
大数据·elasticsearch·搜索引擎
Honeyeagle1 天前
移动式多合一气体检测仪在有限空间作业中的技术实践与安全价值
大数据
YangYang9YangYan1 天前
2026高职大数据专业的实用价值与技术前景
大数据