Flink之Watermark策略代码模板

方式 作用
WatermarkStrategy.noWatermarks() 不生成watermark
WatermarkStrategy.forMonotonousTimestamps() 紧跟最大事件时间watermark生成策略
WatermarkStrategy.forBoundedOutOfOrderness() 允许乱序watermark生成策略
WatermarkStrategy.forGenerator() 自定义watermark生成策略
  • noWatermarks

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark生成策略,选择不生成watermark
          WatermarkStrategy<UserEvent2> watermark = WatermarkStrategy.noWatermarks();
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    关于noWaterMarks()的使用没有太多内容.

  • forMonotonousTimestamps

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用紧跟最大事件时间策略
          WatermarkStrategy<String> watermark = WatermarkStrategy.<String>forMonotonousTimestamps()
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    对于forMonotonousTimestamps()可说内容并不多,如果选择了forMonotonousTimestamps这种方式就必须保证事件时间严格有序,如果出现乱序的情况可能存在大量数据丢失的问题.
    通过源码内容可以看到forMonotonousTimestamps底层也是使用的forBoundedOutOfOrderness方式,只不过将容错时间设置为了0,源码如下:

    java 复制代码
    // 首先看这里,继承的BoundedOutOfOrdernessWatermarks
    public class AscendingTimestampsWatermarks<T> extends BoundedOutOfOrdernessWatermarks<T> {
    
      /** Creates a new watermark generator with for ascending timestamps. */
      public AscendingTimestampsWatermarks() {
          super(Duration.ofMillis(0)); // 这里将容错时间设置为了0
      }
    }
  • forBoundedOutOfOrderness

    java 复制代码
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用允许水位线乱序策略,并设置最大容错时间为2s
          WatermarkStrategy<String> watermark = WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofMillis(2000))
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }

    对于允许乱序策略前面文章有介绍过其原理,比如代码中设置容错时间为2S,那么前后的数据差最大只能是2S,如果差值大于2S,后来的这条数据就会被抛弃.

相关推荐
bxlj_jcj1 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商1 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
Edingbrugh.南空1 小时前
Flink SQLServer CDC 环境配置与验证
数据库·sqlserver·flink
Aurora_NeAr2 小时前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-1232 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
数据与人工智能律师2 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
Edingbrugh.南空3 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星0073 小时前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车
时序数据说5 小时前
为什么时序数据库IoTDB选择Java作为开发语言
java·大数据·开发语言·数据库·物联网·时序数据库·iotdb
Codebee5 小时前
OneCode图表配置速查手册
大数据·前端·数据可视化