可视化模块

目录

可视化送入网络的图片

送入的数据为imgs,其大小为(8,3,256,256),并以2行8列进行展示

python 复制代码
import matplotlib.pyplot as plt
import numpy as np

# 假设你的张量名为 tensor,形状为 (8, 3, 256, 256)
# 假设通道顺序为 RGB

# 将张量的数据格式转换为 (8, 256, 256, 3)
tensor = imgs.permute(0, 2, 3, 1)

# 创建一个 2x4 的子图布局,8 张图像
fig, axes = plt.subplots(2, 4, figsize=(12, 6))

for i in range(8):
    # 选择子图
    ax = axes[i // 4, i % 4]

    # 获取第 i 张图像的数据
    image = tensor[i].numpy()

    # 确保图像的像素值在 [0, 1] 范围内
    image = np.clip(image, 0, 1)

    # 绘制图像
    ax.imshow(image)
    ax.set_title(f'Image {i + 1}')
    ax.axis('off')

plt.tight_layout()
plt.show()

可视化网络层的热力图

python 复制代码
import torch
import matplotlib.pyplot as plt

# 创建一个空的列表来存储该层的输出
activation = []

# 定义一个钩子函数,用于获取该层的输出
def hook_fn(module, input, output):
    activation.append(output)

# 注册钩子到网络的fam4层
model.fam4.register_forward_hook(hook_fn)

# 初始化一个子图,排列方式为2x4
fig, axs = plt.subplots(2, 4, figsize=(16, 8))


# 将输入数据图片传递给网络进行前向传播
output = model(imgs)  

for i in range(8):
    # 获取钩子记录的该层的输出
    layer_output = activation[0]

    # 计算热力图
    heatmap = layer_output.mean(dim=1, keepdim=True)  # 在通道维度上取平均值

    # 可视化热力图
    axs[i // 4, i % 4].imshow(heatmap[i, 0].cpu().detach().numpy(), cmap='viridis')
    axs[i // 4, i % 4].set_title(f'Image {i + 1}')
    axs[i // 4, i % 4].axis('off')

plt.show()
相关推荐
LDG_AGI12 小时前
【推荐系统】深度学习训练框架(二十一):DistributedCheckPoint(DCP) — PyTorch分布式模型存储与加载
pytorch·分布式·深度学习
盼小辉丶13 小时前
PyTorch实战——pix2pix详解与实现
pytorch·深度学习·生成模型
斯外戈的小白13 小时前
【NLP】Transformer在pytorch 的实现+情感分析案例+生成式任务案例
pytorch·自然语言处理·transformer
山土成旧客14 小时前
【Python学习打卡-Day35】从黑盒到“玻璃盒”:掌握PyTorch模型可视化、进度条与推理
pytorch·python·学习
DP+GISer14 小时前
02基于pytorch的深度学习遥感地物分类全流程实战教程(包含遥感深度学习数据集制作与大图预测)-实践篇-python基础与遥感深度学习境配置
人工智能·pytorch·python·深度学习·图像分割·遥感·地物分类
拾贰_C14 小时前
【无标题】
运维·服务器·数据库·pytorch·python·考研·学习方法
haiyu_y15 小时前
Day 55 序列预测任务详解
人工智能·pytorch·深度学习
山居秋暝LS1 天前
CMake下载与安装
pytorch·计算机视觉
谁刺我心1 天前
深度学习pytorch环境配置【保姆级】
人工智能·pytorch·深度学习
电科_银尘2 天前
【Python/Pytorch】-- 创建 tiny-cuda-nn 环境
开发语言·pytorch·python